神经网络实现步骤


数据预处理-归一化


在训练神经网络前一般需要对数据进行预处理,一种重要的预处理手段是归一化处理。下面简要介绍归一化处理的原理与方法。

什么是归一化

数据归一化,就是将数据映射到[0,1]或[-1,1]区间或更小的区间,比如(0.1,0.9) 。

为什么要归一化处理 


<1>输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢、训练时间长。

<2>数据范围大的输入在模式分类中的作用可能会偏大,而数据范围小的输入作用就可能会偏小。

<3>由于神经网络输出层的激活函数的值域是有限制的,因此需要将网络训练的目标数据映射到激活函数的值域。例如神经网络的输出层若采用S形激活函数,由于S形函数的值域限制在(0,1),也就是说神经网络的输出只能限制在(0,1),所以训练数据的输出就要归一化到[0,1]区间。

<4>S形激活函数在(0,1)区间以外区域很平缓,区分度太小。例如S形函数f(X)在参数a=1时,f(100)与f(5)只相差0.0067。

归一化算法 

我最经常用的是线性转换,很方便。 只要知道字段的 最大值和最小值即可。

线性函数转换

表达式如下:
y=(x-MinValue)/(MaxValue-MinValue) (归一到0 1 之间)
y=0.1+(x-min)/(max-min)*(0.9-0.1)(归一到0.1-0.9之间)
说明:x、y分别为转换前、后的值,MaxValue、MinValue分别为样本的最大值和最小值。

对数函数转换

表达式如下:
y=log10(x)
说明:以10为底的对数函数转换。

反余切函数转换

表达式如下:
y=atan(x)*2/PI



 

Matlab数据归一化处理函数 

Matlab中归一化处理数据可以采用premnmx , postmnmx , tramnmx 这3个函数。


 premnmx
语法:[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t)
参数:
pn: p矩阵按行归一化后的矩阵
minp,maxp:p矩阵每一行的最小值,最大值
tn:t矩阵按行归一化后的矩阵
mint,maxt:t矩阵每一行的最小值,最大值
作用:将矩阵p,t归一化到[-1,1] ,主要用于归一化处理训练数据集。



 tramnmx
语法:[pn] = tramnmx(p,minp,maxp)
参数:
minp,maxp:premnmx函数计算的矩阵的最小,最大值
pn:归一化后的矩阵

作用:主要用于归一化处理待分类的输入数据。


postmnmx
语法: [p,t] = postmnmx(pn,minp,maxp,tn,mint,maxt)
参数:
minp,maxp:premnmx函数计算的p矩阵每行的最小值,最大值
mint,maxt:premnmx函数计算的t矩阵每行的最小值,最大值
作用:将矩阵pn,tn映射回归一化处理前的范围。postmnmx函数主要用于将神经网络的输出结果映射回归一化前的数据范围。


使用Matlab实现神经网络

使用Matlab建立前馈神经网络主要会使用到下面3个函数:
newff :前馈网络创建函数
train:训练一个神经网络
sim :使用网络进行仿真


 下面简要介绍这3个函数的用法。


newff函数

newff函数语法 

newff函数参数列表有很多的可选参数,具体可以参考Matlab的帮助文档,这里介绍newff函数的一种简单的形式。
语法:net = newff ( A, B, {C} ,‘trainFun’)
参数:
A:一个n×2的矩阵,第i行元素为输入信号xi的最小值和最大值;
B:一个k维行向量,其元素为网络中各层节点数;
C:一个k维字符串行向量,每一分量为对应层神经元的激活函数;
trainFun :为学习规则采用的训练算法。



常用的激活函数

   常用的激活函数有:
  a) 线性函数 (Linear transfer function)
f(x) = x
  该函数的字符串为’purelin’。

b) 对数S形转移函数( Logarithmic sigmoid transfer function )
    该函数的字符串为’logsig’。


c) 双曲正切S形函数 (Hyperbolic tangent sigmoid transfer function )
  也就是上面所提到的双极S形函数。 
  该函数的字符串为’ tansig’。
  Matlab的安装目录下的toolbox\nnet\nnet\nntransfer子目录中有所有激活函数的定义说明。


常见的训练函数

    常见的训练函数有:
traingd :梯度下降BP训练函数(Gradient descent backpropagation)
traingdx :梯度下降自适应学习率训练函数



网络配置参数

一些重要的网络配置参数如下:
net.trainparam.goal  :神经网络训练的目标误差
net.trainparam.show   : 显示中间结果的周期
net.trainparam.epochs  :最大迭代次数
net.trainParam.lr    : 学习率



 train函数

网络训练学习函数。
语法:[ net, tr, Y1, E ]  = train( net, X, Y )
参数:
X:网络实际输入
Y:网络应有输出
tr:训练跟踪信息
Y1:网络实际输出
E:误差矩阵



 sim函数

语法:Y=sim(net,X)
参数:
net:网络
X:输入给网络的K×N矩阵,其中K为网络输入个数,N为数据样本数
Y:输出矩阵Q×N,其中Q为网络输出个数


Matlab BP网络实例 


       我将Iris数据集分为2组,每组各75个样本,每组中每种花各有25个样本。其中一组作为以上程序的训练样本,另外一组作为检验样本。为了方便训练,将3类花分别编号为1,2,3 。

  使用这些数据训练一个4输入(分别对应4个特征),3输出(分别对应该样本属于某一品种的可能性大小)的前向网络。

       Matlab程序如下:

%读取训练数据
[f1,f2,f3,f4,class] = textread('trainData.txt' , '%f%f%f%f%f',150);

%特征值归一化
[input,minI,maxI] = premnmx( [f1 , f2 , f3 , f4 ]')  ;

%构造输出矩阵
s = length( class) ;
output = zeros( s , 3  ) ;
for i = 1 : s 
   output( i , class( i )  ) = 1 ;
end

%创建神经网络
net = newff( minmax(input) , [10 3] , { 'logsig' 'purelin' } , 'traingdx' ) ; 

%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 500 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

%开始训练
net = train( net, input , output' ) ;

%读取测试数据
[t1 t2 t3 t4 c] = textread('testData.txt' , '%f%f%f%f%f',150);

%测试数据归一化
testInput = tramnmx ( [t1,t2,t3,t4]' , minI, maxI ) ;

%仿真
Y = sim( net , testInput ) 

%统计识别正确率
[s1 , s2] = size( Y ) ;
hitNum = 0 ;
for i = 1 : s2
    [m , Index] = max( Y( : ,  i ) ) ;
    if( Index  == c(i)   ) 
        hitNum = hitNum + 1 ; 
    end
end
sprintf('识别率是 %3.3f%%',100 * hitNum / s2 )


参数设置对神经网络性能的影响 

        我在实验中通过调整隐含层节点数,选择不通过的激活函数,设定不同的学习率 

隐含层节点个数 

隐含层节点的个数对于识别率的影响并不大,但是节点个数过多会增加运算量,使得训练较慢。

激活函数的选择 

激活函数无论对于识别率或收敛速度都有显著的影响。在逼近高次曲线时,S形函数精度比线性函数要高得多,但计算量也要大得多。 

学习率的选择 

学习率影响着网络收敛的速度,以及网络能否收敛。学习率设置偏小可以保证网络收敛,但是收敛较慢。相反,学习率设置偏大则有可能使网络训练不收敛,影响识别效果。



使用AForge.NET实现神经网络 

 AForge.NET简介 

 AForge.NET是一个C#实现的面向人工智能、计算机视觉等领域的开源架构。AForge.NET源代码下的Neuro目录包含一个神经网络的类库。
AForge.NET主页:http://www.aforgenet.com/
AForge.NET代码下载:http://code.google.com/p/aforge/

下面介绍图9中的几个基本的类:
Neuron — 神经元的抽象基类
Layer — 层的抽象基类,由多个神经元组成
Network —神经网络的抽象基类,由多个层(Layer)组成
IActivationFunction - 激活函数(activation function)的接口
IUnsupervisedLearning - 无导师学习(unsupervised learning)算法的接口ISupervisedLearning - 有导师学习(supervised learning)算法的接口


使用Aforge建立BP神经网络 

       使用AForge建立BP神经网络会用到下面的几个类:


 SigmoidFunction : S形神经网络
  构造函数:public SigmoidFunction( double alpha )
   参数alpha决定S形函数的陡峭程度。




 ActivationNetwork :神经网络类
  构造函数:
  public ActivationNetwork( IActivationFunction function, int inputsCount, params int[] neuronsCount )
                         : base( inputsCount, neuronsCount.Length )
  public virtual double[] Compute( double[] input )
参数意义:
inputsCount:输入个数
neuronsCount :表示各层神经元个数



 BackPropagationLearning:BP学习算法

 构造函数:
public BackPropagationLearning( ActivationNetwork network )
 参数意义:
network :要训练的神经网络对象
BackPropagationLearning类需要用户设置的属性有下面2个:
learningRate :学习率
momentum :冲量因子


下面给出一个用AForge构建BP网络的代码。

// 创建一个多层神经网络,采用S形激活函数,各层分别有4,5,3个神经元
//(其中4是输入个数,3是输出个数,5是中间层结点个数)
ActivationNetwork network = new ActivationNetwork(
    new SigmoidFunction(2), 4, 5, 3);

// 创建训练算法对象
BackPropagationLearning teacher = new
BackPropagationLearning(network);

// 设置BP算法的学习率与冲量系数
teacher.LearningRate = 0.1;
teacher.Momentum = 0;

int iteration = 1 ; 

// 迭代训练500次
while( iteration < 500 ) 
{
         teacher.RunEpoch( trainInput , trainOutput ) ; 
         ++iteration ;
}

//使用训练出来的神经网络来分类,t为输入数据向量
network.Compute(t)[0]


Aforge的相关参考链接:

http://www.codeproject.com/Articles/16447/Neural-Networks-on-C

http://code.google.com/p/aforge/

http://www.aforgenet.com/forum/viewtopic.php?f=2&t=343





我的实例

根据上一篇文章 神经网络模型   中说到的判断 建筑形态。

样本的选择

每种分类中随机选取一部分。剩余的作为测试数据。在预测测试样本结果时中把预测错误的标识出来,把对应的样本添加到训练的样本中。这样能很快训练出成功率达到90+甚至100%的网络

部分代码

如下:

训练网络

我这里是 4个输入 得到 4个输出

  private void make_network()
        {
            work_name = this.workname.Text;
            double[][] input = new double[samples][];
            double[][] output = new double[samples][];
            for (int i = 0; i < samples; i++)
            {
                input[i] = new double[4];
                output[i] = new double[4];

                for (int s = 0; s < 4; s++)
                {
                    input[i][s] = input_temps[i, s];

                }

                for (int s = 0; s < 4; s++)
                {
                    output[i][s] = output_temps[i, s];

                }
            }
            //训练网络
            int neruon = int.Parse(this.neuron_text.Text);
            int alpha = int.Parse(this.alpha_text.Text);
            // create multi-layer neural network
            ActivationNetwork network = new ActivationNetwork(new SigmoidFunction(alpha), 4, neruon, 4);
            // create teacher
            BackPropagationLearning teacher = new BackPropagationLearning(network);
            // set learning rate and momentum
            teacher.LearningRate = double.Parse(this.learninglate_text.Text);
            teacher.Momentum = double.Parse(this.Momentum_text.Text);
            //定义绝对误差 
            double error = 1.0;
            int iteration = 1;
        
          
            if (radio2.Checked)
            {
                double error_limit = double.Parse(this.error_text.Text);
                while (error > error_limit)
                {
                    error = teacher.RunEpoch(input, output);
                    this.Invoke(new setStatusDelegate(setStatus), iteration.ToString(), error.ToString());
                    iteration++;
                 
                }
            }

            else if (radio1.Checked)
            {
                int iteration_limit = int.Parse(this.iteration_text.Text);
                while (iteration <iteration_limit )
                {
                    error = teacher.RunEpoch(input, output);
                    this.Invoke(new setStatusDelegate(setStatus), iteration.ToString(), error.ToString());
                    iteration++;
                 

                }
            }

            MessageBox.Show("训练结束");
            // save neural network to file
            network.Save(work_name);
        
        }



单个预测

        private void button4_Click(object sender, EventArgs e)
        {
            //把后面需要到的最大最小值,编码与建筑形态的对应数据提出来
            List<string> building_type_names = new List<string>();
            List<string> building_type_code = new List<string>();

            MongoClient client;
            MongoServer server;
            MongoDatabase database;

            client = new MongoClient("mongodb://192.168.0.121");

            server = client.GetServer();
            database = server.GetDatabase("building_type");

            var coll_max_min = database.GetCollection("max_min");
            var cur_max_min = coll_max_min.FindAll();

            foreach (var ttdoc in cur_max_min)
            {
                if (ttdoc.AsBsonDocument["Name"].ToString() == "high")
                {
                    high_max = double.Parse(ttdoc.AsBsonDocument["max"].ToString());
                    high_min = double.Parse(ttdoc.AsBsonDocument["min"].ToString());
                }
                else if (ttdoc.AsBsonDocument["Name"].ToString() == "all_count")
                {

                    all_count_max = double.Parse(ttdoc.AsBsonDocument["max"].ToString());
                    all_count_min = double.Parse(ttdoc.AsBsonDocument["min"].ToString());

                }
                else
                {
                    house_count_max = double.Parse(ttdoc.AsBsonDocument["max"].ToString());
                    house_count_min = double.Parse(ttdoc.AsBsonDocument["min"].ToString());
                }


            }

            var coll_building_type_name = database.GetCollection("building_type_name");
            var cur_building_type_name = coll_building_type_name.FindAll();

            foreach (var ttdoc in cur_building_type_name)
            {

                building_type_names.Add(ttdoc.AsBsonDocument["Name"].ToString());

                building_type_code.Add(ttdoc.AsBsonDocument["code"].ToString());
            }




            //对输入数据归一化,并使用网络进行预测
            string use_work = this.use_work_name_1.Text;
            Network network = Network.Load(use_work);
         
            double[] inputsss = new double[4];

        
                double x = double.Parse(this.high_text.Text);
                double y = (x - high_min) / (high_max - high_min);
                double s = ((0.5 - 0.1) / 0.5) * y + 0.1;
                       inputsss[0] =  s;
          
       inputsss[1] = double.Parse(this.has_businee_text.Text);

       x = double.Parse(this.all_count_text.Text);
               y = (x - all_count_min) / (all_count_max - all_count_min);
               s = ((0.5 - 0.1) / 0.5) * y + 0.1;
               inputsss[2] = s;


               x = double.Parse(this.house_count_text.Text);
               y = (x - house_count_min) / (house_count_max - house_count_min);
               s = ((0.5 - 0.1) / 0.5) * y + 0.1;
                inputsss[3] = s;


                this.label29.Text = inputsss[0] +"," +inputsss[1] +"," +inputsss[2] +","+ inputsss[3];
          
            
            // 使用网络对训练样本计算输出
            double[] result = network.Compute(inputsss);
            string results = "";


            for (int i = 0; i < result.Length; i++)
            {
                if (i == result.Length - 1)
                {
                    results += result[i].ToString();
                }
                else
                {
                    results += result[i].ToString() + ",";

                }
            }

            this.label22.Text = results;

            //结果数据还原成编码
            string change_results = "";

            for (int i = 0; i < result.Length; i++)
            {
                if (i == result.Length - 1)
                {
                    if (result[i] <= 0.5)
                    {
                        change_results += "0";
                    }
                    else 
                    {
                        change_results += "1";
                    
                    }
                }
                else
                {
                    if (result[i] <= 0.5)
                    {
                        change_results += "0"+",";
                    }
                    else
                    {
                        change_results += "1"+",";

                    }

                }
            }

            this.label24.Text = change_results;


            string result_building_type = "";
            //把编码对应转化为建筑形态
            for (int nn = 0; nn < building_type_code.Count(); nn++)
            {

                if (building_type_code[nn].ToString() == change_results)
                {
                    result_building_type = building_type_names[nn];

                }
            
            }

            this.label26.Text = result_building_type;

        }





可能遇到的问题

Aforge如何保存训练好的神经网络

在使用Aforge时 要确定下的版本是不是最新版,如果不是最新版的话可能没有保存的方法。

如果支持保存 可用如下方法保存:

// save neural network to file
network.Save( "my_nn.bin" );


加载神经网络:

// load neural network
Network network = Network.Load( "my_nn.bin" );




神经网络不收敛

收敛不了有可能是样本中出现了 用一种输入得到不同输出。清除一对二的情况。

学习步长和误差率的设置会影响到收敛   一般100条左右的数据收敛时间在 2分钟内 清除一对二之后 很久都没收敛 要适当修改神经元个数,学习步长等。 我100左右的样本 我一般用7或者10个 12个神经元。 

学习步长也应该 注意, 决定学习步长时 你要观察归一化出来的输入数据,虽然说学习步长太大了会导致不收敛,太小了能保证收敛,但速度有很可能很慢, 比如 输入数据中有0.1 也有0.6  如果 学习步长设置为0.01 那收敛速度就会超慢。 设置成0.1 就很快

神经网络参数设置比较;
其他因素一样的情况下:
学习步长:0.1比1快
神经元7个比3个快
函数陡峭度 1比3快  但正确率比3低





  • 3
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
神经网络实验步骤详细分析具体-神经网络大作业(一).doc 本人做的神经网络实验步骤详细,分析具体,适合做入门学习用-I do neural network experiments, the steps detailed analysis of specific, suitable for entry to study 截取某些内容,方便参考: 用BP网络识别雷达测速的三类信号 一.数据来源      此信号来自一部测速雷达获得的三种目标的回波信号,三种目标分别是行人W、自行车B和卡车T,信号中包含目标的速度信息。 二.信号的分析与处理      根据所给的三类信号的样本,每一个样本中均包含1024个数据,由于每一个样本的数据量较大,不可能将所有1024个数据全都作为神经元的输入,计算量太大,所以必须首先对信号进行分析,提取最有价值的特征信息。      首先可以看看每一个样本中的数据图,以各类信号中的第一个样本为例,如图1所示。 (1)                                       (2)                                        (3) 图1 (1)行人数据图  (2)自行车数据图  (3)卡车数据图              从上图的时域数据基本上观察不出规律,因此我们要对数据进行傅立叶变换,从频域分析数据的特征,如下图2所示。 图2 行人数据频谱图 从上图中看到行人的数据的频谱的幅度很小,原因是因为信号在零点处的值特别大,所以要将在零点处的值去掉,得到如图3所示。 图3 行人数据去掉零点后的频谱图 这时可以观察到信号的一些特征,从图中发现信号的频谱图是基本对称分布的,而且信号的峰值也很大,可以对它首先进行归一化,如下图4所示。 图4 (1)行人数据归一化后的频谱图 (2)取绝对值后的频谱图 同时将自行车和卡车的频谱图来做比较如图5,6所示 图5 (1)自行车数据归一化后的频谱图        (2)取绝对值后的频谱图 图6 (1)卡车数据归一化后的频谱图              (2)取绝对值后的频谱图 从上面三幅图中,可以观察到信号都有明显的峰值,但是出现的位置不同,另外,信号的均值和方差明显不同。但是考虑到雷达所测数据中,会有一些速度反常规的游离数据,所以考虑采用受游离数据影响小的平均绝对值偏差来代替样本方差作为输入特征。同时,以数据的样本中位数来作为输入特征来减少游离数据的影响。根据这些特征进行提取来作为输入。 三.特征提取 1.取信号归一化后的均值作为一个特征量。 2.取信号归一化后的平均绝对值偏差作为一个特征量。 3.取信号归一化后的样本中位数作为一个特征量。 4.由三幅图的比较可以发现,信号的每两点之间的起伏程度也不尽相同,所以可以设定一个特征量,来纪录信号两点间的起伏程度的大小。 5.信号在经过归一化后,可以将信号全部的值加起来,用这个总的值来作为一个特征量。 除了上述的特征,还有很多特征可以提取,但是特征越多,需要的输入神经元越多,依照隐层神经元约为输入神经元的两倍的原则,隐层的神经元也将越多。则网络训练的时间将花费很大。所以,本实验只提取了上述特征中的1,2,3。 四.算法与实现 根据提取的特征的维数,来决定输入神经元的个数。因为提取的三个特征的维数分别为8,1和1,所以输入神经元的个数为10。输出神经元的个数定为3个,考虑到被识别的三种信号分别对应三个输出,虽然用两个神经元就可以表示三种输出状态,但是用三个神经元能更好地分辨,减少出错的概率。至于隐层的神经元个数则按照约为输入神经元个数的两倍的原则,设为20个。当然还可以在调试过程中根据输出的识别率来找到一个一个较为合适的个数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张小凡vip

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值