动态规划 ------ 背包问题

本文详细介绍了01背包、完全背包、多重背包问题以及它们的二维和一维优化方法,通过实例代码展示了如何解决这些问题,强调了动态规划在处理这类经典问题中的核心作用。
摘要由CSDN通过智能技术生成


背包问题是动态规划中非常典型的一些题,本篇文章记录总结一下在学习过程中所遇到的一些背包问题。
其实主要就是3种,01,完全,多重背包问题,这三种详细一些,认真搞懂了,剩下的就是这三种的变种了,换汤不换药?

1. 01 背包问题

在这里插入图片描述

01背包问题链接

0 1 背包问题就是说每一件物品只能选择一次,所以我们每次选择的时候,只用两种可能,不选,0和1也就此而来。

1.二维解决

  • 状态表示:
  • 集合: f[i][j]代表前i件物品中体积不超过j的所有价值
  • 属性: 将所有的价值取max
  • 状态计算:
  • 对于当前的这一状态f[i][j]可以由上一个状态转移过来:
  • 0 - 不选选择当前物品 f[i][j] = f[i - 1][j].
  • 1 - 选择当前物品f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i])

不选当前物品好理解,就是去直接继承选到前一个物品时候的价值.
而选择当前物品是有条件的,就是说当前背包的容量j 必须大于等于当前的物品的体积v[i]才能选择.j - v[i]说的是当前背包的容量减去当前物品的体积,咱既然要选择这个物品,那么必须得这个物品留出相应的空间。

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N]; //v体积,w价值
int f[N][N];    //f[i][j] 表示前i件物品中体积是j的最大价值.

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++)
        scanf("%d%d", &v[i], &w[i]);
    
    for (int i = 1; i <= n; i++)
        for (int j = 0; j <= m; j++)
        {
            f[i][j] = f[i - 1][j];
            if (j >= v[i])
                f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
        }
    
    printf("%d\n", f[n][m]);
    return 0;
}

2. 一维优化

我们还可以对其进行进行优化,可以讲二维优化成一维。
f[i]表示体积是i时候的最大价值.

  1. f[i][j] = f[i - 1][j] 变成 f[j] = f[j] 所以可以直接不写
  2. f[i - 1][j - v[i]] 变成f[j - v[i]]但是此变形并不是等价的,因为我们在真正循环的过程中其实是用f[i][j - v[i]] 于前面的不符,需要将其进行逆序。

大家也可看看这这一篇题解

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N]; //v体积,w价值
int f[N];    //f[i][j] 表示前i件物品中体积是j的最大价值.

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++)
        scanf("%d%d", &v[i], &w[i]);
    
    for (int i = 1; i <= n; i++)
        for (int j = m; j >= v[i]; j--)
                f[j] = max(f[j], f[j - v[i]] + w[i]);
    
    printf("%d\n", f[m]);
    return 0;
}

2. 完全背包问题

在这里插入图片描述

完全背包问题链接

完全背包问题和01背包问题唯一的区别就是,完全背包中的物品可以使用无限次,
而01背包中的物品只能使用一次。

1.暴力3 for.

  • 状态表示:
  • 集合: f[i][j]表示背包容量是i中所选体积不超过j的所有价值
  • 属性: 对所有的价值取max
  • 状态计算:
  • 因为每一个物品可以选择无限次,前提是满足背包容量.
我们尝试用一个变量 k 来充当第i个物品选取k次,
那么k的范围则是 [0,k] 但是k必须满足 k * v[i] <= j. 
因为选取的体积不能超过背包的总容量。
即: f[i][j] = max(f[i][j],f[i - 1][j - k * v[i]] + k * w[i]);
  • 可以发现上面的方程和01背包问题一摸一样,只是多了一个k而已。如果不理解,将k = 1代入即使01背包问题的动态转移方程。而不选的时候则k = 0.
#include <iostream>
#include <algorithm>
using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N][N];

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++)
        scanf("%d%d", &v[i], &w[i]);
    
    for (int i = 1; i <= n; i++)
        for (int j = 0; j <= m; j++)
            for (int k = 0; k * v[i] <= j; k++)
                f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);
    
    printf("%d\n", f[n][m]);
    return 0;
}

这道题目用这个代码是会超时的,但是思路肯定是对的,理解思路才能理解下面的优化。

2. 二维优化

我们将上述的动态转移方程展开

2v = 2 * v && 2w = 2 * w;
f[i][j] = max(f[i-1][j-0v],f[i-1][j-v]+w,f[i-1][j-2v]+2w,f[i - 1][3v]+3w,...)
f[i][j-v] = max(f[i-1][j-v-0v]+0w,f[i-1][j-v-v]+w,f[i-1][j-2v]+2w+....)

在这里插入图片描述
我们可以发现,f[i][j]展开的这一大堆于f[i][j - v]展开的这一大堆是仅仅相差一个w
所以:
f[i][j] = max(f[i - 1][j], f[i][j - v] + w).

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N][N];

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++)
        scanf("%d%d", &v[i], &w[i]);
    
    for (int i = 1; i <= n; i++)
        for (int j = 0; j <= m; j++)
        {
            f[i][j] = f[i - 1][j];
            if (j >= v[i])
                f[i][j] = max(f[i][j], f[i][j - v[i]] + w[i]);
        }
    
    printf("%d\n", f[n][m]);
    return 0;
}

这个代码于01背包问题二维进仅仅差1个数字.
在这里插入图片描述

3. 一维优化

既然只差那一个数字,所以完全背包也可以将其进行优化成一维的。
我们之间在优化01背包的时候提到过:

  • f[i][j] = f[i- 1][j] 转化成f[j] = f[j]直接可以省略掉。
  • 01背包因为f[i - 1][j - v[i]] 转化成f[j]因为是i - 1所以需要逆序体积遍历。
  • 完全背包f[i][j - v[i]]转化成f[j]因为是i所以不需要进行逆序
#include <iostream>
#include <algorithm>
using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N];

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++)
        scanf("%d%d", &v[i], &w[i]);
    
    for (int i = 1; i <= n; i++)
        for (int j = v[i]; j <= m; j++)
                f[j] = max(f[j], f[j - v[i]] + w[i]);
    
    printf("%d\n", f[m]);
    return 0;
}

3. 多重背包问题Ⅰ.

在这里插入图片描述

多重背包问题Ⅰ链接

多重背包问题是将物品的个数做了限制,在给定的这些物品中,选择总价值不超过所给背包体积的最大总价值。

1. 二维解决

我们在上面的完全背包问题中已经学会了0~k次的选择一个物品,至于k的范围则是使k * v[i] <= j将其最大化。而本题中则可以直接获取。
前两种背包问题真的搞懂之后,这道题只需要加一个条件即可。
在这里插入图片描述

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 110;

int n, m;
int f[N][N];
int v[N], w[N], cnt[N];

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++)
        scanf("%d%d%d", &v[i], &w[i], &cnt[i]);
    
    for (int i = 1; i <= n; i++)
        for (int j = 0; j <= m; j++)
            for (int k = 0; k <= cnt[i] && k * v[i] <= j; k++)
                f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);
    printf("%d\n", f[n][m]);
    return 0;
}

2. 一维优化

同之前的优化一样,直接去掉一个维度。
他是01背包问题的变种,删除前是i - 1与删除后并不是等价的,所以需要逆序。

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 110;

int n, m;
int f[N];
int v[N], w[N], cnt[N];

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++)
        scanf("%d%d%d", &v[i], &w[i], &cnt[i]);
    
    for (int i = 1; i <= n; i++)
        for (int j = m; j >= v[i]; j--)
            for (int k = 0; k <= cnt[i] && k * v[i] <= j; k++)
                f[j] = max(f[j], f[j - k * v[i]] + k * w[i]);
    printf("%d\n", f[m]);
    return 0;
}

4. 多重背包问题Ⅱ

多重背包问题Ⅱ链接
这个问题与上方的区别只是数据范围变了,之所以单独拿出来,是因为,这里涉及到了一个二进制的优化,感觉还是挺重要的。
我们假设去店里面送水果,有13颗苹果,16颗梨,11颗西瓜。需要讲这40个水果搬如店中,我们如果一个一个搬,需要40次,说实话有点捞。。。但凡是个正常人我们都应该讲其分开搬,具体怎么分呢,我们采取二进制的方式将其分开。
1,2,4,8,16,32........等等这样一直分下去,但前提一定得是一样的物品分一起,不然你的体积和价值如何计算?
上述例子:
苹果: 1, 2 ,4, 7.
梨: 1, 2, 4, 8, 1.
西瓜: 1, 2, 4, 4.
我只是举个例子,现实生活中肯定不是二进制的搬,1个苹果占一个箱子?
下面的代码就是向上述例子一样,将其一类一类的分组打包。
然后就会变成了01背包问题。

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

const int N = 1e5 + 10, M = 2010;

int n, m;
int v[N], w[N];
int f[M];

int main()
{
    scanf("%d%d", &n, &m);
    int cnt = 0;	//从1开始放。
    for (int i = 1; i <= n; i++)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        int k = 1;
        
        while (k <= c)
        {
            v[++cnt] = a * k;	//先++。
            w[cnt] = b * k;
            
            c -= k;
            k *= 2;
        }
        
        if (c > 0)
        {
            v[++cnt] = a * c;
            w[cnt] = b * c;
        }
    }
    
    n = cnt;
    for (int i = 1; i <= n; i++)
        for (int j = m; j >= v[i]; j--)
            f[j] = max(f[j], f[j - v[i]] + w[i]);
            
    printf("%d\n", f[m]);
    
    return 0;
}

5. 混合背包问题

在这里插入图片描述

混合背包问题链接

混合背包问题就是讲前面所说的3中背包混合在一起。
我们既然已经会了前三种的状态转移方程,那么我们只需要在做的时候,对其进行套用相应的方程即可。
又因为多重背包问题可以将其进行二进制优化转化为01背包问题,所以我们只需要对其进行2个方程各自对应即可。
总的来说也就2个步骤

  • 将多重背包利用二进制优化转化为01背包
  • 将01背包与完全背包各自动态转移方程代入即可。
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
using namespace std;

const int N = 1010;

int n, m;
int f[N];
struct Thing
{
    int kind;
    int v, w;
};
vector<Thing> things;


int main()
{
    scanf("%d%d", &n, &m);
    //第一步:将多重背包利用二进制优化转化为01背包
    for (int i = 1; i <= n; i++)
    {
        int v, w, s;
        scanf("%d%d%d", &v, &w, &s);
        if (s <= 0) //01背包或者完全背包直接插入即可。
            things.push_back({s, v, w});
        else
        {
            //多重背包进行二进制优化,分包
            for (int k = 1; k <= s; k *= 2)
            {
                s -= k;
                things.push_back({-1, v * k, w * k});
            }
            
            if (s > 0)
                things.push_back({-1, v * s, w * s});
        }
    }
   	//第二步:将01背包与完全背包各自动态转移方程代入即可。
    for (auto t : things)
    {
        if (t.kind == -1)   //01背包的动态转移方程
            for (int j = m; j >= t.v; j--)
                f[j] = max(f[j], f[j - t.v] + t.w);
        else                //完全背包的动态转移方程
            for (int j = t.v; j <= m; j++)
                f[j] = max(f[j], f[j - t.v] + t.w);
    }
    
    printf("%d\n", f[m]);
    return 0;
}

6. 二维费用背包问题

在这里插入图片描述

二维费用背包问题链接

二维费用,只是多了一个书包的承受范围,只需要在01背包的基础上多加一层关于重量的的循环就好了。

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 1010;

int n, V, M;            //个数,容积, 承受范围
int v[N], m[N], w[N];   //体积,重量,价值
int f[N][N];            //f[i][j]表示容积不超过i,重量不超过j的最大价值

int main()
{
    scanf("%d%d%d", &n, &V, &M);
    
    for (int i = 1; i <= n; i++)
        scanf("%d%d%d", &v[i], &m[i], &w[i]);
    
    for (int i = 1; i <= n; i++)
        for (int j = V; j >= v[i]; j--)         //容积
            for (int k = M; k >= m[i]; k--)     //承受范围
                f[j][k] = max(f[j][k], f[j - v[i]][k - m[i]] + w[i]);
    
    printf("%d\n", f[V][M]);
    return 0;
}

7. 分组背包问题

在这里插入图片描述

分组背包问题链接

分组背包问题,其实归根结底还是01背包问题,每组只能选择一个物品出来,只不过这一组有很多个物品。
所以我们针对其每一组,将其所有的物品都遍历一遍就好了,在01背包问题上再加一层循环,3for就好了。
01背包问题,同样还是逆序,不过判断j >= v[i]的条件变成了j >= v[k]了。

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 110;

int n, m;
int f[N], v[N], w[N];

int main()
{
    scanf("%d%d", &n, &m);
    
    for (int i = 1; i <= n; i++)
    {
        int s;
        scanf("%d", &s);
        for (int j = 1; j <= s; j++)
            scanf("%d%d", &v[j], &w[j]);
        
        for (int j = m; j >= 0; j--)
            for (int k = 1; k <= s; k++)
                if (j >= v[k])
                    f[j] = max(f[j], f[j - v[k]] + w[k]);
        
    }
    printf("%d\n", f[m]);
    return 0;
}

🎈🎈🎈🎈🎈🎈🎈🎈🎈🎈🎈🎈🎈🎈

  • 20
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值