【CINTA第5次作业】

CINTA第5次作业

在这里插入图片描述

证明: 充分性: ∵ ϕ 是一种群同态 ∴ ∀ a , b ∈ G , ϕ ( a ⋅ b ) = ϕ ( a ) ◦ ϕ ( b ) ∴ ( a b ) 2 = a 2 b 2 ∴ a b = a 2 b 2 ( a b ) − 1 = a 2 b a − 1 ∴ b = a b a − 1 , 即 b a = a b ∴ G 是阿贝尔群 必要性: ∵ G 是阿贝尔群 ∴ ∀ a , b ∈ G , 有 b a = a b ∴ a b b a = a b a b , 即 a a b b = a b a b ∴ a 2 b 2 = ( a b ) 2 , 满足 ϕ ( a ⋅ b ) = ϕ ( a ) ◦ ϕ ( b ) ∴ ϕ 是一种群同态 \begin{aligned} 充分性:&\because \phi是一种群同态\\ &\therefore\forall a,b\in \mathbb{G},\phi(a·b)=\phi(a)◦\phi(b)\\ &\therefore (ab)^2=a^2b^2\\ &\therefore ab=a^2b^2(ab)^{-1}=a^2ba^{-1}\\ &\therefore b=aba^{-1},即ba=ab\\ &\therefore \mathbb{G}是阿贝尔群\\ 必要性:&\because \mathbb{G}是阿贝尔群\\ &\therefore \forall a,b\in \mathbb{G},有ba=ab\\ &\therefore abba=abab,即aabb=abab\\ &\therefore a^2b^2=(ab)^2,满足\phi(a·b)=\phi(a)◦\phi(b)\\ &\therefore \phi是一种群同态 \end{aligned} 充分性:必要性:ϕ是一种群同态a,bG,ϕ(ab)=ϕ(a)ϕ(b)(ab)2=a2b2ab=a2b2(ab)1=a2ba1b=aba1,ba=abG是阿贝尔群G是阿贝尔群a,bG,ba=ababba=abab,aabb=ababa2b2=(ab)2,满足ϕ(ab)=ϕ(a)ϕ(b)ϕ是一种群同态

在这里插入图片描述
证明:
∵ G 是循环群 , 且 ∀ a , b ∈ G 有 ϕ ( a b ) = ϕ ( a ) ϕ ( b ) ∴ ∀ g ∈ G 且存在整数 k 使 g = g k , 有 ϕ ( g ) = ϕ ( g k ) = ϕ ( g ) ϕ ( g ) … ϕ ( g ) = ϕ ( g ) k ∴ ϕ ( G ) 也是循环群 ∵ G 是交换群 , 且 ∀ a , b ∈ G 有 ϕ ( a b ) = ϕ ( a ) ϕ ( b ) ∴ ∀ a , b ∈ G , 有 a b = b a ∴ ϕ ( a ) ϕ ( b ) = ϕ ( a b ) = ϕ ( b a ) = ϕ ( b ) ϕ ( a ) ∴ ϕ ( G ) 也是交换群 \begin{aligned} &\because \mathbb{G}是循环群,且\forall a,b\in \mathbb{G}有\phi (ab)=\phi(a)\phi(b)\\ &\therefore \forall g\in \mathbb{G}且存在整数k使g=g^k,有\phi(g)=\phi(g^k)=\phi(g)\phi(g)…\phi(g)=\phi(g)^k\\ &\therefore \phi( \mathbb{G})也是循环群\\ &\\ &\because \mathbb{G}是交换群,且\forall a,b\in \mathbb{G}有\phi (ab)=\phi(a)\phi(b)\\ &\therefore \forall a,b\in \mathbb{G},有ab=ba\\ &\therefore \phi(a)\phi(b)=\phi (ab)=\phi(ba)=\phi(b)\phi(a)\\ &\therefore \phi( \mathbb{G})也是交换群\\ \end{aligned} G是循环群,a,bGϕ(ab)=ϕ(a)ϕ(b)gG且存在整数k使g=gk,ϕ(g)=ϕ(gk)=ϕ(g)ϕ(g)ϕ(g)=ϕ(g)kϕ(G)也是循环群G是交换群,a,bGϕ(ab)=ϕ(a)ϕ(b)a,bG,ab=baϕ(a)ϕ(b)=ϕ(ab)=ϕ(ba)=ϕ(b)ϕ(a)ϕ(G)也是交换群
在这里插入图片描述
证明:
∵ [ G : H ] = 2 ∴ H 在 G 上不相同的左陪集的个数为 2 设 H 的左陪集分别为 H 1 、 H 2 ∀ g ∈ G ,当 g 落在 H 1 时,则 g H 1 = H 1 = H 1 g 当 g 落在 H 2 时,则 g H 2 = H 2 = H 2 g ∴ ∀ g ∈ G , g H = H g ∴ H 是 G 的正规子群 \begin{aligned} &\because [\mathbb{G}:\mathbb{H}]=2\\ &\therefore \mathbb{H} 在 \mathbb{G} 上不相同的左陪集的个数为2\\ &设\mathbb{H}的左陪集分别为\mathbb{H}_1、\mathbb{H}_2\\ &\forall g\in\mathbb{G},当g落在\mathbb{H}_1时,则g\mathbb{H}_1=\mathbb{H}_1=\mathbb{H}_1g\\ &当g落在\mathbb{H}_2时,则g\mathbb{H}_2=\mathbb{H}_2=\mathbb{H}_2g\\ &\therefore \forall g\in \mathbb{G},g\mathbb{H}=\mathbb{H}g\\ &\therefore \mathbb{H}是\mathbb{G}的正规子群\\ \end{aligned} [G:H]=2HG上不相同的左陪集的个数为2H的左陪集分别为H1H2gG,当g落在H1时,则gH1=H1=H1gg落在H2时,则gH2=H2=H2ggGgH=HgHG的正规子群
在这里插入图片描述
证明:
∵ H 是群 G 的正规子群 , 商群 G / H = { g H , g ∈ G } ∴ ∀ g 1 H , g 2 H ∈ G / H , 有 ( g 1 H ) ( g 2 H ) = g 1 g 2 H ∵ 群 G 是阿贝尔群 ∴ ∀ a , b ∈ G , 有 a b = b a ∴ ∀ g 1 , g 2 ∈ G , ( g 1 H ) ( g 2 H ) = g 1 g 2 H = g 2 g 1 H = ( g 2 H ) ( g 1 H ) ∴ 商群 G / H 也是阿贝尔群 \begin{aligned} &\because \mathbb{H}是群\mathbb{G}的正规子群,商群\mathbb{G}/\mathbb{H}=\{g\mathbb{H},g\in \mathbb{G}\}\\ &\therefore \forall g_1\mathbb{H},g_2\mathbb{H}\in \mathbb{G}/\mathbb{H},有(g_1\mathbb{H})(g_2\mathbb{H})=g_1g_2\mathbb{H}\\ &\because 群\mathbb{G}是阿贝尔群\\ &\therefore \forall a,b\in\mathbb{G},有ab=ba\\ &\therefore \forall g_1,g_2\in\mathbb{G},(g_1\mathbb{H})(g_2\mathbb{H})=g_1g_2\mathbb{H}=g_2g_1\mathbb{H}=(g_2\mathbb{H})(g_1\mathbb{H})\\ &\therefore 商群\mathbb{G}/\mathbb{H}也是阿贝尔群\\ \end{aligned} H是群G的正规子群,商群G/H={gH,gG}g1H,g2HG/H,(g1H)(g2H)=g1g2HG是阿贝尔群a,bG,ab=bag1,g2G,(g1H)(g2H)=g1g2H=g2g1H=(g2H)(g1H)商群G/H也是阿贝尔群
在这里插入图片描述
证明:
∵ H 是群 G 的正规子群 , 商群 G / H = { g H , g ∈ G } ∴ ∀ g 1 H , g 2 H ∈ G / H , 有 ( g 1 H ) ( g 2 H ) = g 1 g 2 H ∵ 群 G 是循环群 ∴ ∀ g ∈ G , 存在整数 k 使 g = g k ∴ g H = g k H = ( g H ) ( g H ) … ( g H ) = ( g H ) k ∴ 商群 G / H 也是循环群 \begin{aligned} &\because \mathbb{H}是群\mathbb{G}的正规子群,商群\mathbb{G}/\mathbb{H}=\{g\mathbb{H},g\in \mathbb{G}\}\\ &\therefore \forall g_1\mathbb{H},g_2\mathbb{H}\in \mathbb{G}/\mathbb{H},有(g_1\mathbb{H})(g_2\mathbb{H})=g_1g_2\mathbb{H}\\ &\because 群\mathbb{G}是循环群\\ &\therefore \forall g\in\mathbb{G},存在整数k使g=g^k\\ &\therefore g\mathbb{H}=g^k\mathbb{H}=(g\mathbb{H})(g\mathbb{H})…(g\mathbb{H})=(g\mathbb{H})^k\\ &\therefore 商群\mathbb{G}/\mathbb{H}也是循环群\\ \end{aligned} H是群G的正规子群,商群G/H={gH,gG}g1H,g2HG/H,(g1H)(g2H)=g1g2HG是循环群gG,存在整数k使g=gkgH=gkH=(gH)(gH)(gH)=(gH)k商群G/H也是循环群

  • 19
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值