红黑树,AVLTree树底层实现逻辑都是平衡二叉树(AVLTree高度平衡,红黑树以某种规则平衡),但终究不像链表的迭代器那样逻辑简单。
简单叙述以下,二叉树上面迭代器的运行逻辑,根据下面的图,迭代器的begin就是二叉树的最左节点,end是二叉树根节点的父节点(NULL)。
为什么要这样设计,因为平衡二叉树在中序遍历下是升序排列,所以只有首部begin在二叉树最左节点,向后++遍历时,才能打印有序数据。
但是为什么end在根节点的父亲?
因为外部循环while(it!=end()),是不等于end节点,所以在遍历完右子树后就像上返回找类似于下图中绿色的parent节点了(右子树遍历完向上找),所以遍历完整颗二叉树后,就会向上找节点,到了父节点的父亲时就为空了,也就是end节点,所以就停止遍历了。
注意:红黑树节点的实现方式是三叉链结构 三个指针 :父亲 左指针 右指针。
简单阐述 外部红黑树迭代器向后运行的场景 operator++()是通过对数据结构向后迭代的分析进行编写的,不同的数据结构有不同的思维逻辑。
代码:
template<class T>
struct __TreeIterator
{
typedef RBTreeNode<T> Node;
typedef __TreeIterator<T> Self;
Node* _node;//迭代器存的是二叉树的节点
__TreeIterator(Node* node)
:_node(node)
{}
T& operator*()
{
return _node->_data;
}
T* operator->()
{
return &_node->_data;
}
//这就是平衡二叉树迭代器的运行核心 一定要理解这部分逻辑才能理解好这个迭代器
Self& operator++()
{
if (_node->_right)
{
// 下一个就是右子树的最左节点
Node* cur = _node->_right;
while (cur->_left)
{
cur = cur->_left;
}
_node = cur;
}
else
{
// 左子树 根 右子树
// 右为空,找孩子是父亲左的那个祖先
Node* cur = _node;
Node* parent = cur->_parent;
while (parent && cur == parent->_right)
{
cur = parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}
//给外界判断提供的
bool operator!=(const Self& s)
{
return _node != s._node;
}
bool operator==(const Self& s)
{
return _node == s._node;
}
};
Self& operator--()
{
if (_node->_left)
{
Node* subRight = _node->_left;
while (subRight->_right)
{
subRight = subRight->_right;
}
_node = subRight;
}
else
{
// 孩子是父亲的右的那个节点
Node* cur = _node;
Node* parent = cur->_parent;
while (parent && cur == parent->_left)
{
cur = cur->_parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}