- 博客(190)
- 资源 (3)
- 收藏
- 关注
原创 从招标文件到投标文件——如何精准提取章节级约束,实现合规与竞争力双提升
本文提出一种精准编制投标文件的“三阶六步法”方法论,核心是通过建立“章节-条款”映射关系确保投标文件的合规性和竞争力。该方法包含三个关键阶段:首先定位投标文件章节结构,明确各章核心目标;其次从招标文件中提取影响各章节的条款,按技术、质量等类型分类;最后建立精准映射表并输出约束清单作为编写指南。文章详细阐述了每个步骤的操作要点,包括关键词筛选、语义匹配等技巧,并推荐使用Excel、Word等工具实现规范化管理。该方法强调“一章一约束”原则,确保每项响应都有招标依据,实现投标文件的可追溯性和可复核性。文末还提供
2025-12-04 19:54:52
839
原创 投标文件标题“翻车”?90%的人不知道的高阶技巧:从“响应要求”到“展现能力”的蜕变
投标标题设计决定评标成败:从"被动响应"到"价值传递"的关键转型。专业投标不应简单套用"响应XX要求"等模板化标题,而应通过技术方案+价值表达的方式主动展示核心能力。文章提出AI辅助的标题优化方案,包括:1)拆解招标要求提炼核心意图;2)采用技术架构+能力优势的命名公式;3)集成智能Prompt实现自动化优化。实践表明,优化后标题可使项目得分提升12%,获得评委"技术深度足、体现核心能力"的积极反馈。文章提供可落地的代码级解决方
2025-11-20 18:49:52
533
原创 MetaGPT源码剖析(三):多智能体系统的 “智能角色“ 核心实现——Role类
本文深入剖析了MetaGPT框架中Role类的代码实现。Role作为多智能体系统的核心单元,定义了角色从感知、决策到执行的全生命周期。其设计亮点包括:1)采用多继承实现能力组合(BaseRole、SerializationMixin等);2)支持三种反应模式(react/by_order/plan_and_act);3)模块化设计将感知、思考、行动解耦;4)完善的协作机制(消息路由、记忆管理)。通过策略模式、观察者模式等设计模式的应用,实现了灵活可扩展的角色系统,为构建复杂多智能体协作提供了坚实基础。
2025-07-21 19:00:47
1233
3
原创 MetaGPT源码剖析(二):MetaGPT框架下的多智能体协作框架——Team(团队)
《Team类:多智能体协作框架的核心设计》摘要: Team类是多智能体协作系统的核心协调器,其架构设计呈现三大亮点:1)模块化设计,通过职责分离将团队管理、环境协调和资源控制解耦;2)灵活扩展性,支持环境策略切换(Environment/MGXEnv)和动态角色管理;3)工程化实践,包含状态序列化实现断点续跑、预算检查防止资源滥用、异步协作提升效率等技术方案。该设计采用策略模式、备忘录模式等经典范式,将复杂协作流程抽象为可管理的组件,既保持系统健壮性,又通过现实化命名(hire/invest等)降低使用门槛
2025-07-21 13:04:53
1196
原创 MetaGPT源码剖析(一):MetaGPT框架下的多智能体协作项目——software_company.py
这段代码是用Python和Typer框架构建的MetaGPT多智能体协作系统的命令行入口。主要功能包括:1)通过Typer处理用户输入参数;2)初始化项目配置和上下文环境;3)动态组建包含产品经理、架构师等角色的智能体团队;4)支持新建或恢复项目;5)异步启动多智能体协作流程。代码采用分层设计,将用户交互层与核心业务逻辑解耦,支持角色扩展和状态持久化,通过配置文件灵活适配不同环境,体现了多智能体系统在软件工程中的应用。
2025-07-21 12:50:48
1056
原创 LangChain 源码剖析(八):对话记忆的 “智能管家“_RunnableWithMessageHistory
RunnableWithMessageHistory是一个为对话系统设计的记忆管理组件,通过自动加载、合并和保存历史消息实现多轮对话功能。核心特点包括:1)自动维护上下文,支持多种存储方式;2)灵活处理不同输入输出格式;3)可配置会话标识规则。其四层架构(初始化、加载合并、处理、保存)完整管理对话生命周期,通过装饰器模式增强原Runnable功能,实现存储与逻辑分离。该组件既能用于开发测试(内存存储),也能适应生产环境(Redis等持久化方案),是构建聊天机器人、智能客服等系统的关键基础设施。
2025-07-18 15:18:39
1315
原创 LangChain 源码剖析(七)RunnableBindingBase 深度剖析:给 Runnable“穿衣服“ 的装饰器架构
RunnableBindingBase是LangChain中的核心装饰器组件,通过非侵入式方式增强Runnable功能。它采用五层嵌套结构:继承RunnableSerializable实现可运行和可序列化特性;通过bound成员封装核心逻辑;用kwargs/config固定参数配置;支持config_factories动态调整配置;允许覆盖输入输出类型。其关键流程采用"融合-转发"机制,智能合并固定参数与动态参数,保持接口透明性。该设计完美实践装饰器模式,既支持固定参数绑定、统一标签配置
2025-07-18 14:56:26
1084
原创 LangChain 源码剖析(六):可序列化 + 可配置的 “智能组件“——RunnableSerializable
RunnableSerializable这个类,它是 LangChain 框架中一个非常实用的增强型组件。如果把普通的Runnable比作 "能干活的工具",那么RunnableSerializable就是 "既能干活、又能存档、还能灵活调整参数" 的智能工具。
2025-07-18 14:28:25
806
原创 LangChain 源码剖析(五):深入浅出理解 Runnable——LangChain 的 “万能积木“
摘要:Runnable是LangChain中的核心抽象类,定义了AI组件的标准接口,使其能像乐高积木一样自由组合。它支持同步/异步、批量/流式等多种运行方式,提供类型安全验证和灵活扩展能力(如自动重试、备用方案)。通过|运算符和字典组合,可实现串行/并行处理流程。这种设计统一了接口,降低学习成本,提高可组合性和可观测性,使开发者能快速构建复杂AI应用。Runnable如同"通用接口标准",让各类AI组件无缝协作。
2025-07-18 13:55:06
869
原创 LangChain 源码剖析(四):让 AI 记住对话历史的核心机制——ConversationChain
本文解析LangChain框架中的ConversationChain组件,该组件通过集成记忆功能(Memory)实现了上下文感知的多轮对话能力。作为LLMChain的扩展,ConversationChain通过memory属性存储对话历史,结合提示词模板和输入输出键管理,形成"输入-整合历史-调用LLM-保存历史-输出"的闭环流程。尽管已被标记为过时(推荐使用更灵活的RunnableWithMessageHistory),其设计思想仍具借鉴价值:通过记忆组件、提示词模板和验证逻辑的组合,
2025-07-18 11:16:41
964
原创 LangChain 源码剖析(三):连接提示词与大语言模型的核心纽带——LLMChain
摘要:LLMChain是LangChain框架中的核心组件,负责将用户输入填充到提示词模板并调用大语言模型处理输出。它包含三个关键属性:提示词模板(定义输入格式)、语言模型(处理请求)和输出解析器(转换结果)。LLMChain支持批量处理和多种输出格式,但正被更灵活的Runnable序列取代。该组件展示了"提示词驱动模型调用"的设计思想,其演进体现了框架向轻量化、组件化的发展趋势。
2025-07-18 10:57:48
965
原创 LangChain 源码剖析(二):LangChain 流程编排的核心骨架——Chain 基类源码剖析
本文深入解析LangChain框架中的Chain基类设计,阐述了其作为流程编排核心的三大价值:标准化接口、复用通用能力和灵活扩展性。Chain基类通过模板方法模式定义了"输入处理→核心执行→输出处理"的标准流程,并内置内存管理、回调机制等通用功能。文章详细剖析了Chain的四个核心设计:抽象接口(input_keys/output_keys/_call)、执行流程(invoke方法的分步处理)、关键特性(内存/回调/序列化)以及背后的设计模式(模板方法/观察者模式),揭示了如何通过抽象与
2025-07-18 10:26:53
962
原创 Dify源码剖析系列(七)核心模块FunctionCallAgentRunner 深度剖析:函数调用型代理的工程实现
本文深入解析了Dify框架中的FunctionCallAgentRunner组件,该组件实现了AI代理从感知需求到工具调用的完整闭环流程。文章从架构定位、核心流程、关键技术等方面展开,详细介绍了其结构化工具调用、流式与阻塞式双模式支持等特性。重点剖析了run方法的工作机制,包括初始化准备、迭代工具调用循环、LLM响应处理、工具执行与结果整合等环节。同时分析了提示信息组织、多模态输入处理等核心方法,并总结了其设计亮点和技术细节。相比思维链代理,该组件通过结构化数据解析和事件驱动设计,实现了更高效规范的工具调用
2025-07-17 19:38:36
986
原创 开源Agent平台Dify源码剖析系列(六)核心模块core/agent之CotCompletionAgentRunner
本文深入解析了Dify框架中core/agent模块的设计,重点剖析了CotCompletionAgentRunner的实现。该组件专为完成式场景优化,通过继承CotAgentRunner并重写关键方法,实现了将系统提示、历史对话、思考步骤和用户查询整合为单个提示的功能。文章详细介绍了三大核心构建器方法(指令提示、历史提示和提示整合)的实现逻辑,并分析了其中运用的模板方法模式、策略模式和组合模式。该设计通过多层模板替换和显式思维链表示,确保了提示构建的灵活性和可解释性,为完成式任务提供了连贯的结构化输出能力
2025-07-17 19:37:28
1196
原创 开源Agent平台Dify源码剖析系列(五)核心模块core/agent之CotChatAgentRunner
本文深入解析Dify框架core/agent模块,重点剖析CotChatAgentRunner类。作为聊天场景优化的思维链代理运行器,其核心功能是将对话上下文转化为结构化的提示信息,支持多模态输入处理。文章从功能定位、核心方法、构建流程和技术细节四个维度展开,详细解读了系统提示构建、用户查询处理和完整提示链整合三大核心方法。通过实例演示了从用户输入到模型提示的完整构建流程,并总结了该组件的设计亮点,包括多模态兼容性、类型安全和迭代优化等特性。最后指出该组件通过结构化引导、透明化推理和工具增强等设计理念,实现
2025-07-17 19:36:13
1171
原创 LangChain Agent 核心框架剖析(一):Agent从抽象设计到工程实现
本文解析了LangChain框架中Agent模块的设计架构与实现原理。通过四层架构(抽象基类、具体实现、输出解析、执行协调)构建了完整的代理系统,支持单/多动作决策、同步/异步执行和流式输出。核心组件包括AgentExecutor作为运行控制器、输出解析器转换LLM结果、以及基于策略模式的可扩展设计。文章详细介绍了其分层抽象、容错机制和迭代控制等工程化特性,展示了如何通过"思考-行动-观察"循环实现AI自主决策,为开发者提供了构建智能代理系统的标准化范式。
2025-07-17 11:28:12
1518
原创 开源Agent平台Dify源码剖析系列(四)核心模块core/agent之CotAgentRunner
本文深入剖析了Dify框架中core/agent模块的CotAgentRunner实现。该模块通过思维链(CoT)机制,使AI代理能够分步解决复杂问题:1. 采用"思考-行动-观察"的多轮迭代循环 2. 支持流式输出让用户实时查看思考过程 3. 内置工具调用引擎和状态记录功能 4. 具备迭代控制和容错机制 5. 适用于数据分析和复杂决策场景 通过将黑箱推理转化为可追溯的白箱步骤,CotAgentRunner显著提升了AI代理处理复杂任务的能力和可信度。
2025-07-16 17:18:03
892
原创 开源Agent平台Dify源码剖析系列(三)核心模块core/agent之BaseAgentRunner
本文深入解析了Dify框架core/agent模块的设计与实现。该模块作为Agent系统的中枢协调器,包含BaseAgentRunner基类及多种AgentRunner实现(如CoT、FunctionCalling等)。核心架构分为初始化、工具管理、历史消息、思考记录和模型交互五大模块,协同完成代理运行全流程。文章详细剖析了从用户提问到生成回答的完整过程,包括工具转换、上下文构建、思考记录等关键环节,并突出了多租户隔离、兼容性设计等技术亮点。该框架通过模块化设计实现了代理行为的可追溯、可管理和可扩展。
2025-07-16 11:34:59
1052
原创 人机协作系列(四)AI编程的下一个范式革命——看Factory AI如何重构软件工程?
现在主流的 AI 编程工具,比如 Copilot、Cursor,其实都面临着一些根本性的局限。首先是附加式创新,它们只是在现有的 IDE 框架里加了个 AI 功能,本质上就像是 “更快的马”,没有突破传统的框架。其次是线性工作流,开发者还是得一行行写代码、审查代码,AI 只不过是个辅助角色。最后是认知过载,开发者还是要深度介入技术细节,没法把自己的高阶思维释放出来。
2025-07-15 18:49:24
577
原创 开源AI Agent开发平台Dify源码剖析系列(二)
Dify是一个基于Flask框架构建的LLM应用开发平台后端服务,采用模块化设计原则。项目核心包含应用管理(聊天/补全/工作流)、RAG系统、智能代理、工作流引擎和工具集成等模块,支持多租户和可扩展的LLM/向量数据库集成。目录结构清晰,分为核心功能(core/)、API控制器(controllers/)、数据模型(models/)和服务层(services/)等,通过configs/目录实现灵活配置。技术特点包括:1)模块化架构;2)完整的工作流编排能力;3)检索增强生成实现
2025-07-15 15:14:38
1603
原创 开源AI应用开发平台Dify系列(一)
Dify 是一个强大的 AI 应用开发平台,允许用户创建各种类型的 AI 应用,其中聊天助手是最常用的应用类型之一。聊天助手允许用户通过自然语言与 AI 模型进行交互,可以用于客户服务、信息查询、任务执行等多种场景。
2025-07-15 14:38:20
488
原创 人机协作系列(一)给AI配上工程师:人机协作的真正升维
当我们习惯于“给工程师配备AI”时,人脑的维度无形中成了AI的瓶颈。无论AI多么先进,工程师们仍可能将AI框定在日常任务的有限格局之内——如同一位建筑师只把智能系统当成精度最高的丁字尺。
2025-07-13 22:02:11
277
原创 人机协作系列(二)导演思维+AI“演员”:一人公司的黄金时代已至
当AI能写代码、做设计、跑客服,独立开发者的核心竞争力不再是“会技术”,而是会提问、会拆解、会判断。
2025-07-12 20:24:18
897
原创 人机协作系列(三)个体创业者的“新物种革命”
认知杠杆化:通过Agent框架(如AutoGPT),个人可将专业知识封装为“数字分身”,实现24小时知识服务。:大模型(LLM)与垂类模型协同,如“热能调度优化模型”精准降低工业能耗11%。:用AI Agent处理重复劳动(如内容剪辑、数据报告),汕尾12345热线用AI处理70%咨询,人工转型复杂问题专家。:钻石型架构崛起——基础岗减少,AI训练师与战略岗占比提升伦理共生:深圳福田区为每个AI设置人类监护人,警惕技术异化。未来的赢家,不是流量猎手,而是那些将血肉之躯与硅基智慧融合的“进化派”。
2025-07-12 18:41:47
466
原创 【解决】safetensors_rust.SafetensorError: Error while deserializing header: HeaderTooLarge
lfs,导致模型参数model.safetensor没有正常下载,需要先安装git-lfs,然后再重新下载model,就可以导入了。
2024-12-28 13:41:11
4572
原创 【PaddleDetection】代码笔记(一)
总的来说,这段代码是一个典型的训练流程框架,它展示了如何根据配置和命令行参数来初始化环境、构建训练器、加载权重,并执行训练过程。这个函数主要用于初始化环境、构建训练器(Trainer),加载模型权重,并执行训练过程。这段代码定义了一个名为。
2024-09-04 15:01:33
771
原创 【TransTrack】代码笔记(一)
构建一个目标检测或分割模型(特别是基于Deformable DETR的模型),以及相应的损失计算器和后处理器。这个函数通常在训练或评估深度学习模型时使用,特别是在处理图像目标检测或分割任务时。总之,这段代码是一个高度可配置的框架,用于构建和准备基于Deformable DETR的目标检测或分割模型,以适应不同的数据集和训练需求。这段Python代码定义了一个名为。的函数,它主要用于根据给定的参数(
2024-09-04 14:48:49
500
原创 error pulling image configuration: download failed after attempts=6: dial tcp 108.160.170.26:443: co
出于没办法的办法,尝试切换镜像源。结果出人意料的,docker pull居然成功了。果然不能钻牛角尖,当天解决不了的事,可能明天就解决了。
2024-08-30 16:38:30
219
原创 PaddleDetection多目标跟踪报错MCMOTEvaluator is not exist, so the MOTA will be -INF
【代码】PaddleDetection多目标跟踪报错MCMOTEvaluator is not exist, so the MOTA will be -INF。
2024-08-27 16:45:19
456
原创 win10 pip install lap报错
如何解决 Microsoft Visual C++ 14.0 or greater is required. Get it with “Microsoft C++ Build Tools“
2024-08-21 17:10:49
243
原创 Kubernetes 部署DolphinScheduler 创建租户失败
但是此时如果配置成 NONE, 租户创建成功了,但是无法创建资源文件,也就是无法上传文件,可能 dolphinscheduler 团队就想着将文件上传到 hdfs,暂不支持本地。需要将 resource.storage.type 置为 NONE, 因为我之前用的 1.3.6 版本的时候,即使资源文件存在本地文件也需要配置成 hdfs。
2023-08-14 11:11:50
1345
原创 SiteWhere 宣布推出 SiteWhere 企业版 (EE) 测试版
SiteWhere EE 有许多功能,但 MachNation 想要强调 4 个附加功能领域,这些功能将使企业更容易发展和管理他们的 AEP 部署。
2023-03-05 00:16:41
452
原创 在 Kubernetes(k8s) 创建 service 使用nodePort 暴露 外部端口6379 时报错
在 Kubernetes(k8s) 创建 service 使用nodePort 暴露 外部端口6379 时报错
2022-05-29 15:10:19
826
原创 达梦数据库怎么查询某个用户下所有的表模式名称
select distinct object_name TABLE_SCHEMA from all_objects where object_type = 'SCH';
2021-05-10 16:48:34
4773
转载 全方位详解Service Mesh(服务网格)
Service mesh是近几年才出现的一个新兴概念。它可以解决微服务之间通信愈发复杂的问题。那么什么是Service mesh?它有什么具体的功能?它的架构又是如何的呢?它与Kubernetes的关系是怎样的?所有答案戳文了解!在数字化转型的旗帜下,IT界的一大变化是大型单体应用程序被分解为微服务架构,即小型、离散的功能单元,并且这些应用程序在容器中运行。包含所有服务代码以及依赖项的软件包被隔离起来,并且能轻松从一个服务器迁移到另一个。像这样的容器化架构很容易在云中扩展和运行,并且能够快速迭代
2021-03-17 14:52:56
2496
原创 如何使用k3s+树莓派在生产中构建轻量K8S裸机集群
Boogie Software是欧洲著名的金融科技公司,多年来致力于为银行提供Fintech、AI、大数据高性能后端、移动应用程序、数据分析及UX等创新服务,帮助银行推动数字化转型。凭借过去十多年在该领域的独特经验,Boogie已成为数字银行服务提供商中的领导者。本文作者是Boogie Software的资深软件架构师Jari Tenhunen。他拥有超过15年的软件开发经验,擅长信息安全和网络协议。并且长期管理项目和团队,在其中主导软件架构和技术,成功将多个产品推向市场。Boogie Soft.
2021-03-17 14:03:02
1154
原创 2020 年 AIoT 产业概述
AIoT 产业结构AIoT 产业主要包括“端”、“边”、“管”、“云”、“用”、“产业服务”六大板块。“端”指的是终端,主要包括底层的芯片、模组、传感器、屏幕、AI 底层算法、操作系 统等。“边”是相对于“中心”的概念,泛指中心节点之外的位置。边缘计算则指的是将计算 及相关能力从中心处理节点下放至边缘节点后形成的,贴近终端的计算能力。“管”主要指的是连接通道,及相关产品和服务。大物联时代带来的大连接数和复杂设 备现场环境,使得有线连接网络捉襟见肘,因此在 AIoT 应用场景中,网络以无线连接
2021-02-03 20:07:43
34025
3
原创 机器学习开放数据集
学习机器学习最好使用真实数据进行实验,而不仅仅是人工数据集。我们有成千上万覆盖了各个领域的开放数据集可以选择。以下是一些可以获得数据的地方。·流行的开放数据存储库:·UC Irvine Machine Learning Repository(http://archive.ics.uci.edu/ml/)·Kaggle datasets(https://www.kaggle.com/datasets)·Amazon’s AWS datasets(http://aws.amazon.com/fr
2020-12-30 17:31:25
349
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅