python调用ollama库详解

20241214-本文章的最新版本:
python调用ollama库详解-CSDN博客

0 准备

1)准备Ollama软件(注意:两个不是同一个东西)

详见上次的文章 Ollama通过gguf文件加载AI模型(补充:关于Ollama加载AI模型的补充

2)准备ollama库

如果您还未安装ollama库,请使用pip安装:

pip install ollama

#1 ollama库的基本使用

import ollama

# 普通输出(请先按照准备工作中的要求安装模型)
back = ollama.chat(model="你的模型名称",messages=[{"role": "user",&#
### Ollama API 使用教程 #### 获取官方文档 为了获得最权威的信息,建议访问 Ollama 的官方网站来获取最新的API使用教程和详细文档。通常这类资源会提供全面的参数解释、请求结构以及响应格式等内容[^1]。 #### 接口概述 /api/embed 是 Ollama 提供的一个RESTful风格的服务端点,它允许开发者通过HTTP请求的方式提交一段文字数据给服务器处理,并返回该段落对应的嵌入向量表示形式。这种技术常被应用于自然语言处理领域中的相似度计算、分类任务等场合。 #### 请求方式与参数设置 当调用 /api/embed 时,可以通过POST方法发送JSON格式的数据体到指定URL路径下。具体来说,在构建请求之前需要准备好如下几个关键要素: - **Content-Type**: 设置为 `application/json` 类型。 - **Authorization Header**: 需要携带有效的认证令牌以便验证身份合法性。 - **Body Payload**: 包含待转换成向量的文字内容字段 `"text"` 和其他可选配置项如模型名称 `"model"` 或者上下文长度限制 `"max_tokens"` 等。 ```json { "text": "your input text here", "model": "default_model_name", "max_tokens": 50 } ``` #### 响应解析 成功执行上述操作之后将会接收到由服务端返回的结果包,其中最重要的是包含了所求得的嵌入向量数组。此外还可能附带有关于本次查询的一些元信息比如耗时统计或是错误提示等等。 #### 示例代码 以下是利用Python编程语言发起一次简单的 HTTP POST 请求至 `/api/embed` 并打印出结果的例子: ```python import requests import json url = 'https://ollama.example.com/api/embed' headers = { 'Content-Type': 'application/json', 'Authorization': 'Bearer YOUR_API_KEY' } data = {"text":"hello world","model":"default"} response = requests.post(url, headers=headers, data=json.dumps(data)) print(response.json()) ```
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值