数据分析需要掌握哪些知识?

现在数据分析那么火,想成为一名合格的数据分析师,需要掌握哪些知识?想要知道数据分析师需要具备的技能知识储备,我们首先要了解一下数据分析师主要做什么,工作的流程是什么。

在这里插入图片描述
一般情况下我们将数据分析师的工作拆解为7个过程:明确需求、获取数据、数据处理、统计分析、数据建模、数据可视化、数据分析报告。在数据分析师具体工作中的每个环节都需要具备对应的知识储备,下面我就根据这个过程来一起了解一下数据分析师需要掌握哪些知识吧。

一、明确需求

首先我们需要明确,一切数据分析的出发点都在于有明确的需求,知道自己的目标才知道需要收集哪些数据,才能在数据处理、统计分析等过程中的重点任务。因此对于数据分析师来说,首先要了解业务,基于业务的数据分析才有意义。然而这个环节对于数据分析师来说,并没有硬核需要掌握的技能,更多的是对行业以及具体业务的理解和经验积累。

二、获取数据

获取数据是数据分析必须具备的能力,也是数据分析过程中的数据来源依赖。在这个环节中,数据分析师需要掌握数据库和爬虫两个方面的技能。

1、数据库技能

目前对于数据非常重视的企业都会搭建自己的数据仓库,数据分析师不需要去了解如何搭建开发数据库,但是对于数据库的基本使用一定要熟悉,至少能够完成数据的提取工作。

因此需要掌握的知识有:

1)了解常用的数据库,例如MySQL、Oracle、SQL Server、Mongodb等等。

2)能够使用基本的SQL语言操作数据库。

2、网络爬虫

很多时候企业内部获取到的数据不足以完成市场调研类的工作,甚至部分企业不具备数据库,这时就需要数据分析师能够通过网络采集到自己想要使用的数据。常见的方法就是通过爬虫。

因此需要掌握的知识有:

1)爬虫开发,虽然很多编程语言都可以完成爬虫工作,但是作为非纯技术类的岗位,建议大家优选Python。相对来说Python入门简单易学,开发效率高更适合数据分析师。当然如果爬取任务过于复杂,可以提出需求让技术部门协助完成。

2)基本的前端知识,使用爬虫获取数据时必须掌握一定量的前端知识,需要掌握HTML、CSS、JavaScript、HTTP原理等知识,以便顺利完成爬取数据的工作。

三、数据处理

一般情况下我们获取到的数据会出现各种问题,例如数据格式错误、数据丢失,数据缺失等等,这样混乱多样化的数据不能够直接用来进行分析和建模,因此我们需要根据一定的规则对数据进行处理,也可以说是清洗数据。在数据处理过程中使用的方法有很多,一般根据数据量的大小使用不同的途径,例如Excel处理、数据库处理、Python程序化处理。

1、Excel处理

Excel是最简单的数据处理工具,在数据量并不是很大的情况下(一般指数据不超过1万条),而且没有过于复杂的数据结构,我们可以直接采用Excel进行数据处理。

因此需要掌握的知识有:

Excel基本使用,包括函数、数据透视等常用的技能。

2、数据库处理

对于数据量大,但是数据结构相对简单的数据处理,我们可以采用数据库SQL进行处理,如果使用数据库进行数据清洗,基本可以在获取数据阶段直接完成。

3、Python程序化处理

对于数据量大,而且数据结构非常复杂的我们一般建议采用Python技术对数据进行处理。Python编程中有非常强大的第三方库,pandas和numpy是目前公认的数据处理能力强大的技术。

因此需要掌握的知识有:

1)Python基础技能,想使用Python首先要掌握它的基础。

2)Python第三方库的应用,主要就是上文提到的pandas和numpy了。

四、统计分析

数据统计分析是数据分析过程中的核心部分。在这个过程中,我们需要使用各种各样的数据分析理论,最简单的求和、求平均值、求方差标准差等等指标,还有对某些特征之间进行相关性分析、列联分析、假设检验等等。

因此需要掌握的知识有:

1)统计分析必备的理论知识。包括均数、中位数、众数等等,这里就不再赘述。

2)掌握常用的工具,例如SPSS/SAS等。

3)当然像Python、R语言也是需要掌握的。

五、数据建模

数据建模可能大家并不熟悉,在我们定性的理解数据之后,想要量化的找出数据之间存在的关系,以便做出相应的预测或者分类,这时就需要我们通过数据结合统计算法、机器学习来训练模型。

因此需要掌握的知识有:

1)数据建模相关的统计学知识,例如线性回归、决策树、随机森林等等。

2)机器学习相关的算法,什么监督学习、非监督学习、强化学习等等都要了解。

3)Python开发,大部分数据模型都可以在Python的第三方库Scikit-learn中发现,因此Python依旧是必不可少的技能。

六、数据可视化

数据可视化能够让数据分析师之外的人直观的看到数据分析的结果,也是数据分析价值最直接的体现方式。目前能够完成数据可视化的工具有Excel、tableau、R语言、Python语言等等。

因此需要掌握的知识有:

1)Excel图形化处理,俗称插入图标。当然也包括数据透视相关的内容。

2)tableau是一款专门从事数据可视化的软件工具。

3)R语言和Python语言都是通过编程的方式实现可视化。

七、数据分析报告

数据分析报告就是整个数据分析过程的结尾工作。将数据分析所得到的结论以报告的形式展示给相关的领导同事。虽然说这个过程不涉及到太多的技术能力,但是作为数据分析师的写作能力,语言表达能力决定了这份数据分析报告的最终价值。

因此需要掌握的知识有:

1)文案协作

2)总结概括能力。

综合以上在数据分析过程各个阶段中需要具备的技能,我们可以了解数据分析师需要掌握的技能包括:统计学想干知识、数学理论知识、数据库知识、SPSS/SAS、tableau、R语言或Python语言等等。

好了,今天的分享就到这里,接下来给大家来一波福利。Python是一门非常不错的编程语言,薪资待遇高、就业前景好。即使你不想出去上班,也可以利用Python在家做兼职(比如爬取客户需要的数据、量化交易、代写程序等)。

如果你对Python感兴趣,想通过学习Python获取更高的薪资,那下面这套Python学习资料一定对你有用!

资料包括:Python安装包+激活码、Python web开发,Python爬虫,Python数据分析,人工智能、机器学习等学习教程。0基础小白也能听懂、看懂,跟着教程走,带你从零基础系统性地学好Python!

学习资源推荐

除了上述分享,如果你也喜欢编程,想通过学习Python获取更高薪资,这里给大家分享一份Python学习资料。

这里给大家展示一下我进的兼职群和最近接单的截图

兼职群

私单

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取,也可以内推兼职群哦~

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

### 1.Python学习路线

image-20230619144606466

python学习路线图1

2.Python基础学习
01.开发工具

02.学习笔记

在这里插入图片描述

03.学习视频

在这里插入图片描述

3.Python小白必备手册

图片

4.数据分析全套资源

在这里插入图片描述

5.Python面试集锦
01.面试资料

在这里插入图片描述

在这里插入图片描述

02.简历模板

在这里插入图片描述

因篇幅有限,仅展示部分资料,添加上方即可获取👆

------ 🙇‍♂️ 本文转自网络,如有侵权,请联系删除 🙇‍♂️ ------

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值