在之前的初级教程中,我们已经了解了NLTK(Natural Language Toolkit)的基本用法,如进行文本分词、词性标注和停用词移除等。在本篇中级教程中,我们将进一步探索NLTK的更多功能,包括词干提取、词形还原、n-gram模型以及词云的绘制。
一、词干提取
词干提取是一种将词语简化为其基本形式或词干的过程。例如,“running”、“runner”和“ran”的词干可能都是“run”。在NLTK中,我们可以使用Porter词干提取器进行词干提取:
python
复制代码
from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize
ps = PorterStemmer()
words = ["run", "runner", "running", "ran"]
for w in words:
print(ps.stem(w))
二、词形还原
与词干提取相似,词形还原也是简化词语的一种方式,但它保留的是词语的词形,而不仅仅是词干。在NLTK中,我们可以使用WordNet词形还原器进行词形还原:
python
复制代码
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
print(lemmatizer.lemmatize("running"))
print(lemmatizer.lemmatize("ran", pos='v'))
三、n-gram模型
n-gram是一种语言模型,用于预测下一个词的可能性。n-gram模型基于统计的方法,考虑前n-1个词来预测下一个词。在NLTK中,我们可以使用ngrams函数来生成n-gram:
python
复制代码
from nltk import ngrams
from nltk.tokenize import word_tokenize
sentence = "I love to play football"
n = 2
grams = ngrams(word_tokenize(sentence), n)
for gram in grams:
print(gram)
四、绘制词云
词云是一种可视化技术,用于表示文本数据中词的频率。在NLTK中,虽然没有直接提供绘制词云的函数,但我们可以结合wordcloud库来创建词云:
python
复制代码
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from wordcloud import WordCloud
import matplotlib.pyplot as plt
text = "NLTK is a leading platform for building Python programs to work with human language data."
stop_words = set(stopwords.words('english'))
words = word_tokenize(text)
words = [word for word in words if word not in stop_words]
wordcloud = WordCloud().generate(' '.join(words))
plt.imshow(wordcloud)
plt.axis("off")
plt.show()
以上,我们介绍了NLTK库中的一些中级功能,包括词干提取、词形还原、n-gram模型和词云的绘制等。然而,NLTK还有更多高级的功能和特性,如情感分析、语义角色标注等,值得我们进一步探索和学习。
如果你对Python感兴趣,想通过学习Python获取更高的薪资,那下面这套Python学习资料一定对你有用!
资料包括:Python安装包+激活码、Python web开发,Python爬虫,Python数据分析,人工智能、机器学习等学习教程。0基础小白也能听懂、看懂,跟着教程走,带你从零基础系统性地学好Python!
学习资源推荐
除了上述分享,如果你也喜欢编程,想通过学习Python获取更高薪资,这里给大家分享一份Python学习资料。
这里给大家展示一下我进的兼职群和最近接单的截图

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取,也可以内推兼职群哦~
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
### 1.Python学习路线
2.Python基础学习
01.开发工具
02.学习笔记
03.学习视频
3.Python小白必备手册
4.数据分析全套资源
5.Python面试集锦
01.面试资料
02.简历模板
因篇幅有限,仅展示部分资料,添加上方即可获取👆
------ 🙇♂️ 本文转自网络,如有侵权,请联系删除 🙇♂️ ------