快速上手RabbitMQ及springboot快速整合RabbitMQ

目录

一、初识mq

1.同步调用

优点:

缺点:

2.异步调用

优点:

缺点:

二、RabbitMQ

1.dockers安装RabbitMQ

1.1 安装docker

1.2 docker安装mq的指令

2.RabbitMQ的整体架构

2.1 核心概念:

三、快速上手RabbitMQ

1.为什么使用springamqp

2.springboot整合RabbitMQ

2.1 引入rabbitmq依赖

2.2 在application.yml中配置mq

2.3 消息发送

2.4 消息接收

2.5 测试结果

3.WorkQueues模型

3.1 案例

3.1.1 消息发送

3.1.2 消息接收

3.1.3 测试结果

3.1.4.能者多劳

3.2.总结

四.交换机类型

4.1 Fanout交换机

4.1.1 消息发送

4.1.2 消息接收

4.1.3 测试结果

4.1.4 交换机的作用

4.2 Direct交换机

4.2.1 消息发送

4.2.2 消息接收

4.2.3 总结Direct交换机与Fanout交换机的差异?

4.3 Topic交换机

4.3.1 消息发送

4.3.2 消息接收

五、声明队列和交换机

5.1 javabean声明一个fanout交换机

5.2 javabean声明direct示例

5.3 基于注解声明


一、初识mq

1.同步调用

同步调用:就如同打视频电话,双方的交互都是实时的。因此同一时刻你只能跟一个人打视频电话。

优点:

• 时效性强,等待到结果后才返回。

缺点:

• 拓展性差
• 性能下降
• 级联失败问题

2.异步调用

异步调用:就如同发微信聊天,双方的交互不是实时的,你不需要立刻给对方回应。因此你可以多线操作,同时跟多人聊天。

异步调用方式其实就是基于消息通知的方式,一般包含三个角色:

  • 消息发送者:投递消息的人,就是原来的调用方

  • 消息Broker:管理、暂存、转发消息,你可以把它理解成微信服务器

  • 消息接收者:接收和处理消息的人,就是原来的服务提供方

在异步调用中,发送者不再直接同步调用接收者的业务接口,而是发送一条消息投递给消息Broker。然后接收者根据自己的需求从消息Broker那里订阅消息。每当发送方发送消息后,接受者都能获取消息并处理。

这样,发送消息的人和接收消息的人就完全解耦了。

优点:

  • 解除耦合,拓展性强

  •  无需等待,性能好

  •  故障隔离

  •  缓存消息,流量削峰填谷

缺点:

  • 完全依赖于Broker的可靠性、安全性和性能

  • 架构复杂,后期维护和调试麻烦

  • 不能立即得到调用结果,时效性差

二、RabbitMQ

1.dockers安装RabbitMQ

1.1 安装docker

安装docker容器

解决安装docker容器失败、获取镜像失败

1.2 docker安装mq的指令

docker run \
 -e RABBITMQ_DEFAULT_USER=登录mq的用户名\
 -e RABBITMQ_DEFAULT_PASS=登录mq的密码\
 -v mq-plugins:/plugins \
 --name mq \
 --hostname mq \
 -p 15672:15672 \
 -p 5672:5672 \
 -d \
 rabbitmq:3.8-management

安装完成后,我们访问 http://192.168.150.101:15672即可看到管理控制台。首次访问需要登录,默认的用户名和密码在配置文件中已经指定了。

2.RabbitMQ的整体架构

2.1 核心概念:

  • publisher:生产者,也就是发送消息的一方

  • consumer:消费者,也就是消费消息的一方

  • queue:队列,存储消息。生产者投递的消息会暂存在消息队列中,等待消费者处理

  • exchange:交换机,负责消息路由。生产者发送的消息由交换机决定投递到哪个队列。

  • virtual host:虚拟主机,起到数据隔离的作用。每个虚拟主机相互独立,有各自的exchange、queue

三、快速上手RabbitMQ

1.为什么使用springamqp

将来我们开发业务功能的时候,肯定不会在控制台收发消息,而是应该基于编程的方式。由于RabbitMQ采用了AMQP协议,因此它具备跨语言的特性。任何语言只要遵循AMQP协议收发消息,都可以与RabbitMQ交互。并且RabbitMQ官方也提供了各种不同语言的客户端。

但是,RabbitMQ官方提供的Java客户端编码相对复杂,一般生产环境下我们更多会结合Spring来使用。而Spring的官方刚好基于RabbitMQ提供了这样一套消息收发的模板工具:SpringAMQP。并且还基于SpringBoot对其实现了自动装配,使用起来非常方便。

SpringAMQP提供了三个功能:

  • 自动声明队列、交换机及其绑定关系

  • 基于注解的监听器模式,异步接收消息

  • 封装了RabbitTemplate工具,用于发送消息

2.springboot整合RabbitMQ

2.1 引入rabbitmq依赖

<!--AMQP依赖,包含RabbitMQ-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-amqp</artifactId>
        </dependency>

2.2 在application.yml中配置mq

spring:
  rabbitmq:
    host: localhost # 你的虚拟机IP
    port: 5672 # 端口
    virtual-host: / # 虚拟主机
    username: 用户名  #默认guest
    password: 密码   #默认guest

2.3 消息发送

SpringAMQP 提供了 RabbitTemplate 工具类,方便我们发送消息。发送消息代码如下:

@SpringBootTest
public class SpringAmqpTest {

    @Autowired
    private RabbitTemplate rabbitTemplate;

    @Test
    public void testSimpleQueue() {
        // 队列名称
        String queueName = "simple.queue";
        // 消息
        String message = "hello, spring amqp!";
        // 发送消息
        rabbitTemplate.convertAndSend(queueName, message);
    }
}

2.4 消息接收

SpringAMQP 提供声明式的消息监听,我们只需要通过注解在方法上声明要监听的队列名称,将来
SpringAMQP 就会把消息传递给当前方法:

@Slf4j
@Component
public class SpringRabbitListener {
@RabbitListener(queues = "simple.queue")
public void listenSimpleQueueMessage(String msg) throws InterruptedException {
log.info("spring 消费者接收到消息:【 " + msg + " 】 ");
}
}

2.5 测试结果

05-14 20:40:38:496  INFO 42220 --- [ntContainer#3-1] c.i.consumer.mq.SpringRabbitListener     : 监听到simple.queue的消息:【"hello,spring amqp!"】

3.WorkQueues模型

Work queues,任务模型。简单来说就是多个消费者绑定到一个队列,共同消费队列中的消息

当消息处理比较耗时的时候,可能生产消息的速度会远远大于消息的消费速度。长此以往,消息就会堆积越来越多,无法及时处理。

此时就可以使用work 模型,多个消费者共同处理消息处理,消息处理的速度就能大大提高了。

3.1 案例

基本思路如下:
1. 在 RabbitMQ 的控制台创建一个队列,名为 work.queue
2. 在 publisher 服务中定义测试方法,发送 50 条消息到 work.queue
3. 在 consumer 服务中定义两个消息监听者,都监听 work.queue 队列
4. 消费者 1 每秒处理 40 条消息,消费者 2 每秒处理 5 条消息

3.1.1 消息发送
/**
     * workQueue
     * 向队列中不停发送消息,模拟消息堆积。
     */
@Test
public void testWorkQueue() throws InterruptedException {
    // 队列名称
    String queueName = "simple.queue";
    // 消息
    String message = "hello, message_";
    for (int i = 0; i < 50; i++) {
        // 发送消息,每20毫秒发送一次,相当于每秒发送50条消息
        rabbitTemplate.convertAndSend(queueName, message + i);
        Thread.sleep(20);
    }
}
3.1.2 消息接收
@RabbitListener(queues = "work.queue")
public void listenWorkQueue1(String msg) throws InterruptedException {
    System.out.println("消费者1接收到消息:【" + msg + "】" + LocalTime.now());
    Thread.sleep(20);
}

@RabbitListener(queues = "work.queue")
public void listenWorkQueue2(String msg) throws InterruptedException {
    System.err.println("消费者2........接收到消息:【" + msg + "】" + LocalTime.now());
    Thread.sleep(200);
}
3.1.3 测试结果
消费者1接收到消息:【hello, message_0】21:06:00.869555300
消费者2........接收到消息:【hello, message_1】21:06:00.884518
消费者1接收到消息:【hello, message_2】21:06:00.907454400
消费者1接收到消息:【hello, message_4】21:06:00.953332100
消费者1接收到消息:【hello, message_6】21:06:00.997867300
消费者1接收到消息:【hello, message_8】21:06:01.042178700
消费者2........接收到消息:【hello, message_3】21:06:01.086478800
消费者1接收到消息:【hello, message_10】21:06:01.087476600
消费者1接收到消息:【hello, message_12】21:06:01.132578300
消费者1接收到消息:【hello, message_14】21:06:01.175851200
消费者1接收到消息:【hello, message_16】21:06:01.218533400
消费者1接收到消息:【hello, message_18】21:06:01.261322900
消费者2........接收到消息:【hello, message_5】21:06:01.287003700
消费者1接收到消息:【hello, message_20】21:06:01.304412400
消费者1接收到消息:【hello, message_22】21:06:01.349950100
消费者1接收到消息:【hello, message_24】21:06:01.394533900
消费者1接收到消息:【hello, message_26】21:06:01.439876500
消费者1接收到消息:【hello, message_28】21:06:01.482937800
消费者2........接收到消息:【hello, message_7】21:06:01.488977100
消费者1接收到消息:【hello, message_30】21:06:01.526409300
消费者1接收到消息:【hello, message_32】21:06:01.572148
消费者1接收到消息:【hello, message_34】21:06:01.618264800
消费者1接收到消息:【hello, message_36】21:06:01.660780600
消费者2........接收到消息:【hello, message_9】21:06:01.689189300
消费者1接收到消息:【hello, message_38】21:06:01.705261
消费者1接收到消息:【hello, message_40】21:06:01.746927300
消费者1接收到消息:【hello, message_42】21:06:01.789835
消费者1接收到消息:【hello, message_44】21:06:01.834393100
消费者1接收到消息:【hello, message_46】21:06:01.875312100
消费者2........接收到消息:【hello, message_11】21:06:01.889969500
消费者1接收到消息:【hello, message_48】21:06:01.920702500
消费者2........接收到消息:【hello, message_13】21:06:02.090725900
消费者2........接收到消息:【hello, message_15】21:06:02.293060600
消费者2........接收到消息:【hello, message_17】21:06:02.493748
消费者2........接收到消息:【hello, message_19】21:06:02.696635100
消费者2........接收到消息:【hello, message_21】21:06:02.896809700
消费者2........接收到消息:【hello, message_23】21:06:03.099533400
消费者2........接收到消息:【hello, message_25】21:06:03.301446400
消费者2........接收到消息:【hello, message_27】21:06:03.504999100
消费者2........接收到消息:【hello, message_29】21:06:03.705702500
消费者2........接收到消息:【hello, message_31】21:06:03.906601200
消费者2........接收到消息:【hello, message_33】21:06:04.108118500
消费者2........接收到消息:【hello, message_35】21:06:04.308945400
消费者2........接收到消息:【hello, message_37】21:06:04.511547700
消费者2........接收到消息:【hello, message_39】21:06:04.714038400
消费者2........接收到消息:【hello, message_41】21:06:04.916192700
消费者2........接收到消息:【hello, message_43】21:06:05.116286400
消费者2........接收到消息:【hello, message_45】21:06:05.318055100
消费者2........接收到消息:【hello, message_47】21:06:05.520656400
消费者2........接收到消息:【hello, message_49】21:06:05.723106700

可以看到消费者1和消费者2竟然每人消费了25条消息:

  • 消费者1很快完成了自己的25条消息

  • 消费者2却在缓慢的处理自己的25条消息。

也就是说消息是平均分配给每个消费者,并没有考虑到消费者的处理能力。导致1个消费者空闲,另一个消费者忙的不可开交。没有充分利用每一个消费者的能力,最终消息处理的耗时远远超过了1秒。这样显然是有问题的。

3.1.4.能者多劳

在spring中有一个简单的配置,可以解决这个问题。我们修改consumer服务的application.yml文件,添加配置

spring:
  rabbitmq:
    listener:
      simple:
        prefetch: 1 # 每次只能获取一条消息,处理完成才能获取下一个消息

测试结果:

消费者1接收到消息:【hello, message_0】21:12:51.659664200
消费者2........接收到消息:【hello, message_1】21:12:51.680610
消费者1接收到消息:【hello, message_2】21:12:51.703625
消费者1接收到消息:【hello, message_3】21:12:51.724330100
消费者1接收到消息:【hello, message_4】21:12:51.746651100
消费者1接收到消息:【hello, message_5】21:12:51.768401400
消费者1接收到消息:【hello, message_6】21:12:51.790511400
消费者1接收到消息:【hello, message_7】21:12:51.812559800
消费者1接收到消息:【hello, message_8】21:12:51.834500600
消费者1接收到消息:【hello, message_9】21:12:51.857438800
消费者1接收到消息:【hello, message_10】21:12:51.880379600
消费者2........接收到消息:【hello, message_11】21:12:51.899327100
消费者1接收到消息:【hello, message_12】21:12:51.922828400
消费者1接收到消息:【hello, message_13】21:12:51.945617400
消费者1接收到消息:【hello, message_14】21:12:51.968942500
消费者1接收到消息:【hello, message_15】21:12:51.992215400
消费者1接收到消息:【hello, message_16】21:12:52.013325600
消费者1接收到消息:【hello, message_17】21:12:52.035687100
消费者1接收到消息:【hello, message_18】21:12:52.058188
消费者1接收到消息:【hello, message_19】21:12:52.081208400
消费者2........接收到消息:【hello, message_20】21:12:52.103406200
消费者1接收到消息:【hello, message_21】21:12:52.123827300
消费者1接收到消息:【hello, message_22】21:12:52.146165100
消费者1接收到消息:【hello, message_23】21:12:52.168828300
消费者1接收到消息:【hello, message_24】21:12:52.191769500
消费者1接收到消息:【hello, message_25】21:12:52.214839100
消费者1接收到消息:【hello, message_26】21:12:52.238998700
消费者1接收到消息:【hello, message_27】21:12:52.259772600
消费者1接收到消息:【hello, message_28】21:12:52.284131800
消费者2........接收到消息:【hello, message_29】21:12:52.306190600
消费者1接收到消息:【hello, message_30】21:12:52.325315800
消费者1接收到消息:【hello, message_31】21:12:52.347012500
消费者1接收到消息:【hello, message_32】21:12:52.368508600
消费者1接收到消息:【hello, message_33】21:12:52.391785100
消费者1接收到消息:【hello, message_34】21:12:52.416383800
消费者1接收到消息:【hello, message_35】21:12:52.439019
消费者1接收到消息:【hello, message_36】21:12:52.461733900
消费者1接收到消息:【hello, message_37】21:12:52.485990
消费者1接收到消息:【hello, message_38】21:12:52.509219900
消费者2........接收到消息:【hello, message_39】21:12:52.523683400
消费者1接收到消息:【hello, message_40】21:12:52.547412100
消费者1接收到消息:【hello, message_41】21:12:52.571191800
消费者1接收到消息:【hello, message_42】21:12:52.593024600
消费者1接收到消息:【hello, message_43】21:12:52.616731800
消费者1接收到消息:【hello, message_44】21:12:52.640317
消费者1接收到消息:【hello, message_45】21:12:52.663111100
消费者1接收到消息:【hello, message_46】21:12:52.686727
消费者1接收到消息:【hello, message_47】21:12:52.709266500
消费者2........接收到消息:【hello, message_48】21:12:52.725884900
消费者1接收到消息:【hello, message_49】21:12:52.746299900

可以发现,由于消费者1处理速度较快,所以处理了更多的消息;消费者2处理速度较慢,只处理了6条消息。而最终总的执行耗时也在1秒左右,大大提升。

正所谓能者多劳,这样充分利用了每一个消费者的处理能力,可以有效避免消息积压问题。

3.2.总结

Work模型的使用:

  • 多个消费者绑定到一个队列,同一条消息只会被一个消费者处理

  • 通过设置prefetch来控制消费者预取的消息数量

四.交换机类型

交换机的作用主要是接收发送者发送的消息,并将消息路由到与其绑定的队列。
常见交换机的类型有以下三种:
Fanout :广播
Direct :定向
Topic :话题

4.1 Fanout交换机

Fanout Exchange 会将接收到的消息路由到每一个跟其绑定的 queue ,所以也叫广播模式

4.1.1 消息发送
@Test
    public void testFanoutQueue() {
        //1.交换机名
        String exchangeName = "hmall.fanout";
        //2.消息
        String message = "hello,spring everyone!";
        //3.发送消息
//        rabbitTemplate.convertAndSend(exchangeName,null, message);//交换机名、RoutingKing、消息类型
        rabbitTemplate.convertAndSend(exchangeName,"", message);//交换机名、RountingKing、消息类型
    }
4.1.2 消息接收
 @RabbitListener(queues = "fanout.queue1")
    public void listenFanoutQueue1(String message) {
        log.info("消费者1监听到fanout.queue1的消息:【{}】", message);
    }

    @RabbitListener(queues = "fanout.queue2")
    public void listenFanoutQueue2(String message) {
        log.info("消费者2监听到fanout.queue2的消息:【{}】", message);
    }
4.1.3 测试结果
05-14 21:11:21:281  INFO 42220 --- [ntContainer#7-1] c.i.consumer.mq.SpringRabbitListener     : 消费者1监听到fanout.queue1的消息:【hello,spring everyone!】
05-14 21:11:21:281  INFO 42220 --- [ntContainer#5-1] c.i.consumer.mq.SpringRabbitListener     : 消费者2监听到fanout.queue2的消息:【hello,spring everyone!】
4.1.4 交换机的作用
  • 接收publisher发送的消息

  • 将消息按照规则路由到与之绑定的队列

  • 不能缓存消息,路由失败,消息丢失

  • FanoutExchange的会将消息路由到每个绑定的队列

4.2 Direct交换机

Direct Exchange 会将接收到的消息根据规则路由到指定的 Queue ,因此称为定向路由。

  • 每一个 Queue 都与 Exchange 设置一个 BindingKey
  • 发布者发送消息时,指定消息的 RoutingKey
  • Exchange 将消息路由到 BindingKey 与消息 RoutingKey 一致的队列
4.2.1 消息发送
@RabbitListener(queues = "direct.queue1")
public void listenDirectQueue1(String msg) {
    System.out.println("消费者1接收到direct.queue1的消息:【" + msg + "】");
}

@RabbitListener(queues = "direct.queue2")
public void listenDirectQueue2(String msg) {
    System.out.println("消费者2接收到direct.queue2的消息:【" + msg + "】");
}
4.2.2 消息接收
@Test
public void testSendDirectExchange() {
    // 交换机名称
    String exchangeName = "hmall.direct";
    // 消息
    String message = "红色警报!日本乱排核废水,导致海洋生物变异,惊现哥斯拉!";
    // 发送消息
    rabbitTemplate.convertAndSend(exchangeName, "red", message);
}
4.2.3 总结Direct交换机与Fanout交换机的差异?
  • Fanout交换机将消息路由给每一个与之绑定的队列

  • Direct交换机根据RoutingKey判断路由给哪个队列

  • 如果多个队列具有相同的RoutingKey,则与Fanout功能类似

4.3 Topic交换机

TopicExchange 与 DirectExchange 类似,区别在于 routingKey 可以是多个单词的列表,并且以 . 分割。
Queue 与 Exchange 指定 BindingKey 时可以使用通配符:

  •  # :代指 0 个或多个单词
  •  * :代指一个单词

4.3.1 消息发送
/**
 * topicExchange
 */
@Test
public void testSendTopicExchange() {
    // 交换机名称
    String exchangeName = "hmall.topic";
    // 消息
    String message = "晴天";
    // 发送消息
    rabbitTemplate.convertAndSend(exchangeName, "china.news", message);
}
4.3.2 消息接收
@RabbitListener(queues = "topic.queue1")
public void listenTopicQueue1(String msg){
    System.out.println("消费者1接收到topic.queue1的消息:【" + msg + "】");
}

@RabbitListener(queues = "topic.queue2")
public void listenTopicQueue2(String msg){
    System.out.println("消费者2接收到topic.queue2的消息:【" + msg + "】");
}

五、声明队列和交换机

在之前我们都是基于RabbitMQ控制台来创建队列、交换机。但是在实际开发时,队列和交换机是程序员定义的,将来项目上线,又要交给运维去创建。那么程序员就需要把程序中运行的所有队列和交换机都写下来,交给运维。在这个过程中是很容易出现错误的。

因此推荐的做法是由程序启动时检查队列和交换机是否存在,如果不存在自动创建

SpringAMQP 提供了几个类,用来声明队列、交换机及其绑定关系:
• Queue :用于声明队列,可以用工厂类 QueueBuilder 构建
• Exchange :用于声明交换机,可以用工厂类 ExchangeBuilder 构建
• Binding :用于声明队列和交换机的绑定关系,可以用工厂类 BindingBuilder 构建


5.1 javabean声明一个fanout交换机

Fanout 类型的交换机,并且创建队列与其绑定

@Configuration
public class FanoutConfig {
    /**
     * 声明交换机
     * @return Fanout类型交换机
     */
    @Bean
    public FanoutExchange fanoutExchange(){
        return new FanoutExchange("hmall.fanout");
    }

    /**
     * 第1个队列
     */
    @Bean
    public Queue fanoutQueue1(){
        return new Queue("fanout.queue1");
    }

    /**
     * 绑定队列和交换机
     */
    @Bean
    public Binding bindingQueue1(Queue fanoutQueue1, FanoutExchange fanoutExchange){
        return BindingBuilder.bind(fanoutQueue1).to(fanoutExchange);
    }

    /**
     * 第2个队列
     */
    @Bean
    public Queue fanoutQueue2(){
        return new Queue("fanout.queue2");
    }

    /**
     * 绑定队列和交换机
     */
    @Bean
    public Binding bindingQueue2(Queue fanoutQueue2, FanoutExchange fanoutExchange){
        return BindingBuilder.bind(fanoutQueue2).to(fanoutExchange);
    }
}

5.2 javabean声明direct示例

direct模式由于要绑定多个KEY,会非常麻烦,每一个Key都要编写一个binding:

@Configuration
public class DirectConfig {

    /**
     * 声明交换机
     * @return Direct类型交换机
     */
    @Bean
    public DirectExchange directExchange(){
        return ExchangeBuilder.directExchange("hmall.direct").build();
    }

    /**
     * 第1个队列
     */
    @Bean
    public Queue directQueue1(){
        return new Queue("direct.queue1");
    }

    /**
     * 绑定队列和交换机
     */
    @Bean
    public Binding bindingQueue1WithRed(Queue directQueue1, DirectExchange directExchange){
        return BindingBuilder.bind(directQueue1).to(directExchange).with("red");
    }
    /**
     * 绑定队列和交换机
     */
    @Bean
    public Binding bindingQueue1WithBlue(Queue directQueue1, DirectExchange directExchange){
        return BindingBuilder.bind(directQueue1).to(directExchange).with("blue");
    }

    /**
     * 第2个队列
     */
    @Bean
    public Queue directQueue2(){
        return new Queue("direct.queue2");
    }

    /**
     * 绑定队列和交换机
     */
    @Bean
    public Binding bindingQueue2WithRed(Queue directQueue2, DirectExchange directExchange){
        return BindingBuilder.bind(directQueue2).to(directExchange).with("red");
    }
    /**
     * 绑定队列和交换机
     */
    @Bean
    public Binding bindingQueue2WithYellow(Queue directQueue2, DirectExchange directExchange){
        return BindingBuilder.bind(directQueue2).to(directExchange).with("yellow");
    }
}

5.3 基于注解声明

基于@Bean的方式声明队列和交换机比较麻烦,Spring还提供了基于注解方式来声明。

@RabbitListener(bindings = @QueueBinding(
    value = @Queue(name = "direct.queue1"),
    exchange = @Exchange(name = "hmall.direct", type = ExchangeTypes.DIRECT),
    key = {"red", "blue"}
))
public void listenDirectQueue1(String msg){
    System.out.println("消费者1接收到direct.queue1的消息:【" + msg + "】");
}

@RabbitListener(bindings = @QueueBinding(
    value = @Queue(name = "direct.queue2"),
    exchange = @Exchange(name = "hmall.direct", type = ExchangeTypes.DIRECT),
    key = {"red", "yellow"}
))
public void listenDirectQueue2(String msg){
    System.out.println("消费者2接收到direct.queue2的消息:【" + msg + "】");
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值