基于残差学习的人机协作装配中机器人控制的任务导向安全领域研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

基于残差学习的人机协作装配中机器人控制的任务导向安全领域研究是指利用残差学习方法,在人机协作装配任务中,通过机器人控制技术实现任务导向的安全性研究。在这个领域中,研究者着重关注如何通过机器人控制算法来确保在人机协作装配过程中的安全性,同时保证任务的高效完成。

这一领域的研究对于提高人机协作装配任务的安全性、效率和可靠性具有重要意义,有助于推动工业自动化和智能制造技术的发展。

摘要:本研究聚焦于人机协作装配场景,旨在利用残差学习方法,通过机器人控制技术实现任务导向的安全性。详细探讨了残差学习方法在优化机器人控制策略中的应用,任务导向安全性的保障措施,人机协作装配技术的实现方式,以及对研究成果的实验验证与系统集成。研究成果对于提升人机协作装配任务的安全性、效率和可靠性具有重要意义,有望推动工业自动化和智能制造技术的发展。

一、引言

随着工业自动化和智能制造的发展,人机协作装配在制造业中的应用越来越广泛。在人机协作装配过程中,确保机器人的安全运行以及高效完成任务成为关键问题。残差学习作为一种有效的深度学习方法,为解决人机协作装配中机器人控制的任务导向安全问题提供了新的途径。

二、残差学习方法的应用

2.1 残差学习原理

残差学习是一种深度学习方法,通过学习残差(实际输出与期望输出之间的差异)来训练模型 。传统的深度学习模型在训练过程中,随着网络层数的增加,可能会出现梯度消失或梯度爆炸等问题,导致模型性能下降。残差学习通过引入残差块,使得模型可以学习输入与输出之间的残差,有效地解决了这些问题,提高了模型的训练效果和泛化能力。

2.2 在机器人控制策略优化中的应用

在人机协作装配中,机器人需要根据不同的任务要求和环境信息,实时调整自身的控制策略。利用残差学习,可以将机器人的实际动作与期望动作之间的差异作为残差进行学习,从而优化控制策略,提高任务的安全性和效率 。例如,通过对大量人机协作装配数据的学习,残差学习模型可以预测机器人在不同工况下的最佳动作,使机器人能够更加准确地执行任务,减少因操作不当而导致的安全事故。

三、任务导向的安全性

3.1 任务目标与安全性的结合

在人机协作装配中,任务目标通常是将各个零部件正确地装配在一起,同时保证装配质量和生产效率。而安全性则要求机器人在执行任务过程中,不会对周围环境、人员以及装配件造成伤害 。因此,需要将任务目标与安全性有机结合起来。例如,在制定机器人的运动轨迹时,不仅要考虑如何快速准确地到达目标位置进行装配操作,还要考虑如何避开人员和其他障碍物,防止发生碰撞。

3.2 控制算法设计

为了确保机器人能够识别和避开潜在的危险情况,需要设计适当的控制算法 。这些算法可以基于传感器数据,如激光雷达、摄像头等获取的环境信息,实时监测机器人周围的情况。当检测到潜在危险时,控制算法能够及时调整机器人的运动轨迹或停止机器人的动作。例如,基于距离传感器的碰撞检测算法可以在机器人接近人员或障碍物时,迅速发出警报并采取制动措施,避免碰撞的发生。

四、人机协作装配技术

4.1 安全的人机交互界面开发

安全的人机交互界面是实现人机有效协作的重要环节。通过该界面,操作人员可以方便地与机器人进行沟通和协作,同时确保自身的安全 。例如,开发直观易懂的操作界面,使操作人员能够清晰地了解机器人的工作状态和任务进度;设置紧急停止按钮和安全防护装置,在发生异常情况时能够及时中断机器人的运行,保障人员安全。

4.2 机器人控制算法使机器人适应人员动作和意图

为了实现机器人与人员之间的有效协作,需要设计机器人控制算法,使机器人能够根据人员的动作和意图来调整自身行为 。例如,利用动作捕捉技术获取人员的动作信息,通过机器学习算法分析人员的意图,然后机器人根据这些信息实时调整自己的运动轨迹和操作力度,与人员实现协同工作。

五、实验验证与系统集成

5.1 实验验证

对研究成果进行实验验证是确保其有效性和可行性的重要步骤。在实际装配场景中,搭建实验平台,对所提出的机器人控制算法进行测试 。例如,通过多次重复装配任务,记录机器人的运行时间、装配精度、安全事故发生率等指标,分析算法在不同工况下的性能表现。同时,对比采用残差学习方法前后机器人的控制效果,验证残差学习对提高任务导向安全性的有效性。

5.2 系统集成

将经过实验验证的机器人控制算法集成到实际的人机协作装配系统中,是实现研究成果实际应用的关键 。在系统集成过程中,需要考虑算法与硬件设备的兼容性,以及与其他生产环节的协同工作。例如,将机器人控制算法与自动化生产线的控制系统进行集成,实现整个生产过程的自动化和智能化。

六、结论

基于残差学习的人机协作装配中机器人控制的任务导向安全领域研究,通过残差学习方法优化机器人控制策略,结合任务目标确保安全性,实现人机有效协作,并经过实验验证与系统集成,为提高人机协作装配任务的安全性、效率和可靠性提供了有效的解决方案。未来的研究可以进一步探索更先进的残差学习算法,以及如何更好地应对复杂多变的装配环境,推动人机协作装配技术的不断发展。

📚2 运行结果

部分代码:

% Reconstruct the path from start to goal
path = goal;
while ~isequal(path(1,:), start)
    idx = find(edges(:,2) == find(ismember(nodes, path(1,:),'rows')), 1);
    path = [nodes(edges(idx, 1), :); path];
end

% Displaying elapsed time and number of nodes in the path
disp(['Elapsed time for RRT: ', num2str(elapsed_time), ' seconds']);
disp(['Number of steps from start to goal: ', num2str(size(path,1)-1)]); % subtracting the start node

% Plotting the result
figure;
hold on;
xlim([1, N]);
ylim([1, M]);
plot(obstacles(:,2), obstacles(:,1), 'ks', 'MarkerSize', 10, 'MarkerFaceColor', 'k');  % Plot obstacles
plot(human(2), human(1), 'bo', 'MarkerSize', 10, 'MarkerFaceColor', 'b');  % Plot human
plot(start(2), start(1), 'go', 'MarkerSize', 10, 'MarkerFaceColor', 'g');  % Plot start
plot(goal(2), goal(1), 'ro', 'MarkerSize', 10, 'MarkerFaceColor', 'r');  % Plot goal
plot(path(:,2), path(:,1), 'm', 'LineWidth', 1);  % Plot path
title('RRT Path Planning');
xlabel('X');
ylabel('Y');
grid on;
hold off;

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

Cheng Zhu (2023) Task-Oriented Safety Field for Robot

[1]吴德文.面向人机协作的工业机器人外力检测研究与实现[D].武汉理工大学,2018.

[2]赵长盛.人机协作机器人的安全控制系统研究[D].东北大学,2019.

[3]陈鹏飞,赵鑫,赵欢.基于示教学习和自适应力控制的机器人装配研究[J].机电工程, 2020, 37(5):7.DOI:CNKI:SUN:JDGC.0.2020-05-018.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值