目前学术界关于金融科技发展水平的测算,主要有以下三类方法;
一是:采用北京大学数字金融研究中心编制的中国数字普惠金融指数,例如郭峰(2020),该指数根据蚂蚁金服的底层交易数据进行编制,从覆盖广度、使用深度、数字化程度等三个维度反映金融科技发展水平。
二是:采用地区金融科技公司的数量来衡量地区金融科技发展程度。例如宋敏等(2021)。
三是:采用文本挖掘法,以金融科技关键词检索结果来衡量金融科技发展水平。例如郭品和沈悦(2019)。
但是前两种测度方法多用于全国与省市级层面的宏观研究。而基于文本挖掘法所构建的金融科技指数更适合对商业银行(包括上市公司)进行微观分析。
因此,黄磊,黄思刚,杨承佳(2023)借鉴了李春涛等(2020)和翟胜宝等(2023)的方法。通过机器学习方法、文本挖掘法,从各上市公司历年的年度报告(包括商业银行)中提取涵盖人工智能、区块链、云计算、大数据、线上化与移动化等六个维度的124个金融科技关键词词频数,再对所得结果做对数化处理,即可得到各年度各商业银行的金融科技发展水平。
经过计算得到最终结果,具体说明如下;
数据名称:上市公司金融科技发展水平测算数据(含上市商业银行)!
时间跨度:2001年-2022年!
参考文献:黄磊,黄思刚,杨承佳.金融科技对绿色信贷的影响及作用机制——基于商业银行金融科技视角[J].金融发展研究,2023(07):73-82.
数据样本:6.8多条(包含上市公司年报、社会责任、环境、ESG、可持续发展报告等文本类型)。