- 博客(40)
- 收藏
- 关注
原创 数据分析入门指南:从历史到实践
在信息爆炸的时代,数据分析已经成为各行各业不可或缺的技能,无论是商业决策、医疗研究,还是社会科学,数据分析都在其中扮演着关键角色。本文将带你深入了解数据分析的历史、定义、流程、数据来源与处理、常用工具,并通过实际案例,让你对数据分析有更加全面的认识。
2025-05-19 20:06:05
692
原创 手把手教学|用飞书+扣子工作流实现自动化批量图片生成,效率提升99%!体验完整操作流程
在先前的文章中,我们已经深入探讨了扣子智能体的多种应用场景,以及如何创建和使用工作流进行高效管理。本文将引领大家通过一个具体案例,将扣子的工作流功能嵌入飞书应用中,实现操作的自动化与高效化。
2025-04-28 13:52:16
1106
原创 扣子智能体平台深度解读:功能剖析与全流程工作流详解
这篇文章带着大家详细了解了扣子智能体平台的四个核心模块 ——“编排”“插件”“工作流” 和 “触发器”,把从设计流程到扩展功能、从执行逻辑到事件响应的整套能力都讲明白了。
2025-04-23 19:51:58
867
原创 从零理解智能体:用“扣子“编织AI的未来
在本文中,我们详细阐述了智能体的基本概念,并对扣子平台的各个功能板块进行了深入解析。同时,我们通过实际操作引导大家创建了一个简单的智能体,旨在让大家亲身体验智能体创建的过程,并感受到其操作的简便性。
2025-04-23 14:56:14
1529
原创 手把手教你 Flink DataStream API 实战(三):窗口进阶与延迟数据处理
通过这两个案例,我们掌握了 Flink 处理事件时间窗口和延迟数据的核心机制,接下来可尝试:结合窗口函数计算 TopN、滑动窗口、会话窗口等,构建更复杂的实时分析逻辑等等。祝你编码愉快!
2025-04-19 20:52:11
1043
原创 Scala 版 Flink 的 DataStream API 实战:Kafka 集成流处理,学生成绩处理全流程 续篇1
在之前的博客中,我们已经深入探讨了 Scala 版 Flink 的 DataStream API 编程模型、窗口划分、时间概念、窗口计算以及水位线等基础知识,还通过一个实际的题目案例(学生成绩处理全流程)进行了巩固。今天,我们将迎来第二篇题目案例,这一次我们会引入 Kafka 作为数据的输入源和输出目标,实现真正的流处理过程。在开始之前,如果你还没有掌握前面的基础知识,建议先回顾一下之前的博客内容。
2025-04-19 11:02:25
791
原创 Scala版 Flink DataStream API 实战案例详解:学生成绩处理全流程
在本文中,我们围绕学生成绩数据处理的题目,利用 Flink 流处理框架,通过读取数据并运用filtermap等多种算子完成计算特定学生平均成绩、统计选课数量等功能,详细剖析了算子逻辑,尤其是的应用。未来可将这些基础逻辑拓展到实时数据源处理、结合窗口操作分析成绩波动趋势,同时探索优化代码性能,挖掘 Flink 在数据处理领域的更多潜力。
2025-04-17 20:41:56
1025
原创 Flink DataStream API深度解析(Scala版):窗口计算、水位线与状态编程
本文系统介绍了 Flink Scala 版 DataStream API 中窗口计算的各个组件、水位线与迟到数据处理机制,以及核心的状态编程能力。掌握这些内容后,将能够构建更加鲁棒、高性能的流处理程序。
2025-04-14 19:26:54
1156
原创 Flink 编程基础:Scala 版 DataStream API 入门
流处理技术在大数据时代正变得越来越重要,而 Apache Flink 作为领先的流处理引擎,凭借其高性能、低延迟和丰富的 API 受到了广泛关注。本文将以 Scala 语言为例,详细讲解 Flink DataStream API 的基本编程模型,从数据源、数据转换、数据输出,到窗口划分与时间概念,最后结合经典的 WordCount 案例,带大家一步步动手实践。
2025-04-12 21:47:17
1168
原创 OpenCV 进阶实战与技巧——图像处理的全面解析
在之前的博客中,我们学习了图像读取、预处理、边缘检测与轮廓提取等基本操作。本篇文章在此基础上进一步扩展,详细讲解了图像平移、旋转、缩放的几何变换,以及图像的锐化处理。同时,还介绍了边缘检测中常用的 Sobel 和 Scharr 算法,以及几种常用的图像滤波器:均值滤波、中值滤波和高斯滤波。这些内容能够帮助你更好地理解图像预处理和增强的原理,提升你的 OpenCV 技能。
2025-04-10 22:05:57
1269
原创 用Python和OpenCV开启图像处理魔法之旅
本文详细介绍了 Python OpenCV 的基本操作,从图像读取、灰度转换、二值化到边缘检测和轮廓提取,每一步都附有详细的代码示例和说明。我们还提供了一个 SVG 流程图代码,帮助大家直观理解整个处理流程。希望这篇博客能够帮助你对 OpenCV 有更深入的认识,并在实际项目中进行应用。
2025-04-10 19:51:17
695
原创 Python爬虫基础:手把手教你抓取小说vip内容(图文详解)
爬虫作为一种高效的数据采集工具,能够自动从网页中提取所需信息,广泛应用于信息收集、数据分析、市场调研等众多领域。本文将以一个具体的爬虫程序案例为基础,详细介绍如何入门爬虫。
2025-04-08 21:50:36
2695
原创 通过Ollama本地部署DeepSeek R1模型(Windows版)
本文我们详细讲解了 Ollama 部署 DeepSeek R1的流程,通过结合可视化工具可大幅提升体验。本地部署不仅可以去避免网络依赖,还能保护隐私数据,适合开发者和技术爱好者探索AI应用。
2025-04-07 21:22:42
991
原创 用Scala玩转Flink:从零构建实时处理系统
Apache Flink 是一个开源的流处理引擎,最早诞生于批处理系统演进而来,但它的核心设计目标是解决实时流数据处理问题。Flink 能够高效地处理无界数据流,同时也支持批处理任务。其高吞吐、低延迟、可扩展性和容错能力使其在实时数据处理、事件驱动应用和复杂事件处理等场景中得到了广泛应用。简单来说,Apache Flink 是一个分布式、高性能、始终可用、且准确的流处理和批处理框架。你没看错,它不仅擅长处理源源不断到来的实时数据流,也能高效地处理存储在文件系统或数据库中的静态数据。
2025-04-06 21:53:10
1005
原创 Scala语言基础:开启你的 Flink 之旅
掌握这些Scala基础,就像获得了打开Flink大门的钥匙🔑。接下来我们将使用这些工具构建实时数据处理流水线,让数据像河流一样在程序中自然流动。准备好了吗?让我们进入分布式计算的精彩世界!动手练习:尝试实现一个函数,使用集合操作找出100以内所有素数的平方和。(提示:使用filter和map// 参考答案!
2025-04-06 18:31:37
980
原创 神经网络入门:生动解读机器学习的“神经元”
想象一下我们的大脑。里面布满了数以亿计的神经元,它们相互连接,传递着各种信息,让我们能够思考、学习和感知世界。神经网络的灵感正是来源于此。神经网络模拟人脑神经元之间的连接方式,由大量的人工神经元(也称节点或单元)按层次结构组成。每个神经元会接收输入,经过加权求和和激活函数的处理后,将信号传递到下一层。输入层:负责接收数据。隐藏层:执行大量的非线性变换,是模型表达能力的关键。输出层:输出最终预测结果。这种层层传递、不断调整权重的过程就是神经网络“学习”的过程。🌰生活中的神经网络。
2025-04-05 20:02:38
1079
原创 当机器学习遇见购物车分析:FP-Growth算法全解析
本文详细介绍了 FP-Growth 算法的原理、FP-Tree 的构建过程以及如何通过 Python 实现该算法。通过手把手的代码讲解与图文展示,相信大家对频繁项集挖掘有了更直观的认识和理解。在实际应用中,FP-Growth 算法因其高效性被广泛应用于大规模数据挖掘中。如果你对算法原理或代码实现有任何疑问,欢迎在评论区留言交流!
2025-04-04 23:43:34
1583
原创 当机器学习遇见购物车:手把手教你玩转Apriori关联分析
通过本文的讲解,我们学习了 Apriori 算法的基本原理和实现步骤,并通过 Python 示例展示了如何利用该算法在实际数据中发现关联规则。Apriori 算法作为关联规则挖掘的基础方法,其思想也为后续更复杂的算法(例如 FP-growth 算法)打下了坚实基础。在实际应用中,你可以根据数据集特点调整最小支持度和最小置信度的参数,并扩展算法对大规模数据的处理能力。此外,还可以结合数据可视化手段,直观展示规则之间的关系,进一步提升数据洞察力。
2025-04-04 15:04:01
592
原创 机器学习入门指南:从零开始理解AI的核心
机器学习不是“黑科技”,而是一套用数据解决问题的工具。掌握基础概念后,你会发现它离生活并不遥远——从手机推荐算法到自动驾驶,背后都是这些原理在支撑。
2025-03-31 22:38:39
970
原创 当“概率直觉“遇见机器学习:手把手实现朴素贝叶斯算法
朴素贝叶斯算法虽然依赖于特征独立性的假设,但其实现简单、速度快、效果良好,使其在实际应用中十分常见。本文从贝叶斯定理出发,阐述了朴素贝叶斯算法的基本理论和假设,并通过详细的Python案例实战,帮助大家理解如何在真实问题中应用该算法。希望这篇博客文章能让你对朴素贝叶斯算法有更深入的认识,并在后续的机器学习实践中游刃有余。如果你有任何问题或改进建议,欢迎在评论区留言讨论!
2025-03-31 16:53:28
1046
原创 手把手教你理解决策树:从原理到实战
通过本文的学习,我们已经基本掌握了决策树的核心原理和实战应用。接下来可以尝试调整参数观察模型变化,或者挑战更复杂的数据集。决策树作为基础算法,也是随机森林、GBDT等集成方法的基础,理解它将为后续学习打下坚实基础!
2025-03-29 16:45:11
785
原创 手把手教你理解支持向量机(SVM):从“分界线”到“核魔法”
通过本文,我们进一步理解了SVM背后的几何直觉,还亲手实现了分类模型。记住,参数调节就像调整望远镜——需要耐心找到清晰的焦点。下次当你遇到复杂的分类问题时,不妨试试这把“机器学习中的瑞士军刀”
2025-03-27 18:03:15
997
原创 手把手教你掌握K近邻算法:从原理到实战
KNN的核心思想如同谚语——物以类聚:未知样本的类别由最近的K个邻居投票决定。比如医生判断肿瘤性质时,会参考相似患者的病理特征
2025-03-23 13:35:03
643
原创 手把手教你理解机器学习中的“逻辑回归”
通过本文,我们详细介绍了逻辑回归的基本思想、数学原理以及如何在 Python 中实现二分类任务。我们不仅展示了如何利用 Sigmoid 函数将线性组合映射为概率,还推导了交叉熵损失函数,并讨论了如何利用梯度下降来优化模型。同时,通过混淆矩阵和 ROC 曲线对模型进行评估,并指出了逻辑回归在面对复杂非线性数据时的局限性和可能的改进方向。w_j。
2025-03-17 20:47:11
1080
原创 不会PS也能做设计?谷歌Gemini保姆教程:4步生成中国风/赛博朋克海报(非广告!纯干货)
全网首发!谷歌AI核弹级更新:小红书/电商/教育领域一键生成神器,限时免费
2025-03-15 19:31:10
1540
原创 手把手教你理解机器学习中的“线性回归”
线性回归是机器学习的“第一课”,核心是通过数据找到最佳拟合直线,并用数学方法优化参数。掌握它的原理和实现,能为后续学习逻辑回归、神经网络打下基础。记得在实际应用中,结合数据特点选择合适的变体(如正则化方法),才能让模型更精准可靠!
2025-03-15 12:24:30
943
原创 AI图文生产力拉满!谷歌Gemini 2.0实测:从食谱到营销海报,5分钟搞定专业级内容
谷歌Gemini 2.0 Flash的诞生,标志着“一个人就是一支团队”的时代正式到来。文中的案例仅是其能力的冰山一角——你还可以用它生成探店视频分镜、烘焙教程长图,甚至结合实时反馈调整菜谱!
2025-03-13 21:54:11
603
原创 手把手拆解排序算法(计数排序、桶排序、基数排序)
计数排序是唯一不需要元素比较的排序算法,通过统计元素出现次数完成排序。适用于整数数据且数据范围较小的情况(如年龄排序、考试成绩排序)。桶排序是计数排序的优化版,将数据分到有限数量的桶中,每个桶单独排序后合并。适用于分布均匀的数据(如学生成绩、年龄);通过分桶降低数据规模,提升排序效率基数排序通过按位分配和收集实现排序,分为LSD(最低位优先)和MSD(最高位优先)两种方式。适用于多位数整数或字符串(如手机号、日期)每次按某一位分配到桶中,重复多次直到最高位关系与演进计数排序是桶排序的特例。
2025-03-13 14:23:24
894
原创 手把手拆解算法(希尔排序)
希尔排序(Shell Sort)是插入排序的改进版本,由D.L. Shell于1959年提出。其核心思想是通过分组插入排序逐步缩小增量,使数据趋于有序,最终进行一次插入排序完成整体排序。与直接插入排序相比,希尔排序通过“大步长跳跃交换”减少了元素移动次数,提升了效率希尔排序实现过程较为简单,所需代码量少。在处理中等规模数据,例如包含千级元素的数据时,表现优异。此外,它还可作为快速排序的预处理步骤,为后续排序工作奠定基础。该方法的性能严重依赖增量序列设计,需要依据数据的具体特点进行调整。
2025-03-09 16:38:33
269
原创 手把手拆解三大复杂算法(归并排序)
归并排序(Merge Sort)是一种基于分治法(Divide and Conquer)的排序算法,核心思想是将一个无序数组递归拆分成最小单元,再逐步合并成有序序列。分割:将数组不断二分,直到每个子数组只剩一个元素(此时天然有序)。合并:将两个有序子数组合并为一个更大的有序数组,直至所有元素合并完毕归并排序时间复杂度稳定为 O(n log n),适合大规模数据。且是稳定排序,适用于需要保留元素原始顺序的场景(如多关键字排序)。不足点在于,它需要额外 O(n) 空间,内存占用较高。
2025-03-09 15:16:48
287
原创 手把手拆解三大复杂排序算法(堆排序)
排序算法是编程世界里最基础又最迷人的主题之一。今天,我们要深入探讨一种非常高效的排序算法——堆排序。它不像冒泡排序那样简单直接,也不像快速排序那样以 partition 操作为核心,而是基于一种名为“堆”的数据结构。听起来有点复杂?别担心,我会从最基础的概念开始,一步步带你走进堆排序的世界。堆排序是一种基于树的排序算法,它利用最大堆或最小堆的性质,通过构建堆、不断调整堆来实现排序。它的优点是时间复杂度稳定在 O(nlogn),空间复杂度低。缺点是实现稍微复杂一点,而且不如快速排序常用。
2025-03-07 18:14:20
816
原创 手把手拆解三大复杂排序算法(快速排序)
快速排序算法的核心思想是“分而治之”,它通过不断地将待排序序列划分成较小的子序列,然后分别对这些子序列进行排序,最终将整个序列有序化。它是由 C.A.R.Hoare 在 1962 年提出的,以其高效性而闻名,尤其在处理大规模数据时表现优异,是很多实际应用场景中的首选排序算法。快速排序算法凭借其优雅的思路和高效的性能,在排序算法领域占据着举足轻重的地位。它的分治思想和分区操作让人拍案叫绝,通过不断地划分和递归排序,能快速地将无序序列转换为有序序列。
2025-03-07 12:56:45
1014
原创 手把手拆解三大基础排序算法(插入排序)
插入排序是一种简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序是一种简单且高效的排序算法,特别适合小规模数据或部分有序的序列。
2025-03-06 19:31:31
427
原创 手把手拆解三大基础排序算法(选择排序)
选择排序是一种简单直观的排序算法。它的基本思想是:每一次从待排序的数据中选出最小的一个元素,存放在序列的起始位置;然后,再从剩余未排序元素中继续寻找最小元素,放到已排序序列的末尾。以此类推,直到所有元素都排好序(若降序排列则相反,寻找最大元素)。选择排序是一种简单但效率较低的排序算法,适用于数据量较小的场景。它的优点是实现简单,缺点是时间复杂度较高,不适用于大规模数据排序。
2025-03-06 17:24:27
343
原创 手把手拆解三大基础排序算法(冒泡排序)
冒泡排序是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。遍历数列的工作是重复地进行,直到没有再需要交换的元素,也就是说该数列已经排序完成。这就像是水里的气泡往上升一样,所以被称为冒泡排序。
2025-03-05 21:41:51
883
原创 [JAVA]大整数乘法(分治法)
大整数乘法是一种用于计算两个非常大的整数相乘的方法,通常超出了计算机硬件所能直接处理的范围。在这种情况下,我们需要使用一些特殊的算法来处理这类问题。本文将详细介绍大整数乘法的分治算法。
2023-10-29 14:59:02
956
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人