使用 Neo4j 和 LangChain 集成非结构化知识图增强 QA

目前基于大模型的信息检索有两种方法,一种是基于微调的方法,一种是基于 RAG 的方法。

信息检索和知识提取是一个不断发展的领域,随着大型语言模型(LLM)和知识图的出现,这一领域发生了显着的变化,特别是在多跳问答的背景下。

接下来我们继续深入,跟着文章完成一个项目,该项目利用 Neo4j 矢量索引和 Neo4j 图数据库的强大功能来实现检索增强生成系统,旨在为用户查询提供精确且上下文丰富的答案。

该系统采用向量相似性搜索来检索非结构化信息,同时访问图数据库来提取结构化数据,以确保响应不仅全面,而且锚定在验证过的知识中。

这种方法对于解决多跳问题尤其重要,因为单个查询可能需要分解为多个子问题,并且可能需要来自大量文档的信息才能生成准确的答案。

图片

在数据既丰富又复杂的时代,上述系统成为一个至关重要的工具,它确保用户查询得到的答案既包含广泛的知识,又保持验证准确性,无缝地弥合了非结构化数据和结构化知识图之间的鸿沟。

最后一步,系统将所检索到的非结构化和结构化信息传递给新的大型语言模型 Mistral-7b,用于文本生成。这种集成确保生成的响应不仅依赖于模型中内置的广泛知识,还经过特定实时数据的微调和丰富,这些数据来自向量和图形数据库的检索,从而提供更加详尽、准确和与上下文相关的信息,以提升用户体验。

用通俗易懂方式讲解系列

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了NLP面试与技术交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、添加微信号:mlc2060,备注:技术交流
方式②、微信搜索公众号:机器学习社区,后台回复:技术交流

在这里插入图片描述

01 GraphCypherQAChain

GraphCypherQAChain 类在自然语言问题查询图数据库(特别是 Neo4j)领域发挥着重要作用。它利用 LLM 从用户输入的问题生成 Cypher 查询,然后执行这些查询在 Neo4j 图形数据库中,并根据查询结果提供答案。

这一工具使用户能够检索特定数据,而无需编写复杂的 Cypher 查询,从而使存储在图形数据库中的数据更容易访问和互动。

02 Mistral 7B

Mistral 7B 是最新的大型语言模型,因其在一系列基准测试中的卓越性能而受到认可,展示了处理各种语言任务和查询的熟练程度,如下图所示。

图片

在检索增强生成 (RAG) 架构中,Mistral 7B 发挥着关键作用,它根据向量和图形搜索检索到的信息合成和生成文本,确保输出不仅上下文丰富,而且能够根据用户的查询精确定制。它有效地弥合了非结构化数据和结构化知识图之间的差距,提供混合了预先训练的知识和实时、经过验证的数据的答案。

03 执行

让我们从安装依赖项开始。

pip install langchain openai wikipedia tiktoken neo4j python-dotenv transformers
pip install -U sagemaker

Neo4j 向量索引

我们首先导入必要的库和模块,为数据集准备、Neo4j 向量索引的接口以及使用 Mistral 7B 的文本生成功能奠定基础。使用 dotenv,它可以安全地加载环境变量,保护 OpenAI API 和 Neo4j 数据库的敏感信息。

import os
import re
from langchain.vectorstores.neo4j_vector import Neo4jVector
from langchain.document_loaders import WikipediaLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from dotenv import load_dotenv

load_dotenv()
os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY')
os.environ["NEO4J_URI"] = os.getenv('NEO4J_URI')
os.environ["NEO4J_USERNAME"] = os.getenv('NEO4J_USERNAME')
os.environ["NEO4J_PASSWORD"] = os.getenv('NEO4J_PASSWORD')

在这里,我们使用 Leonhard Euler 的维基百科页面来进行我们的实验。我们使用该 bert-base-uncased 模型来标记文本。WikipediaLoader 加载指定页面的原始内容,然后使用 LangChain 的 RecursiveCharacterTextSplitter 将其分成更小的文本片段。

该拆分器确保每个块最大化为 200 个标记,其中重叠 20 个标记,遵守嵌入模型的上下文窗口限制,并确保不会丢失上下文的连续性。

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

def bert_len(text):
    tokens = tokenizer.encode(text)
    return len(tokens)

raw_documents = WikipediaLoader(query="Leonhard Euler").load()
text_splitter = RecursiveCharacterTextSplitter(
          chunk_size = 200,
          chunk_overlap  = 20,
          length_function = bert_len,
          separators=['\n\n', '\n', ' ', ''],
      )

documents = text_splitter.create_documents([raw_documents[0].page_content])

分块文档作为节点实例化到 Neo4j 向量索引中。它使用 Neo4j 图数据库和 OpenAI 嵌入的核心功能来构建该向量索引。

# Instantiate Neo4j vector from documents
neo4j_vector = Neo4jVector.from_documents(
    documents,
    OpenAIEmbeddings(),
    url=os.environ["NEO4J_URI"],
    username=os.environ["NEO4J_USERNAME"],
    password=os.environ["NEO4J_PASSWORD"]
)

在提取向量索引中的文档后,我们对示例用户查询执行向量相似度搜索,并检索前 2 个最相似的文档。

query = "Who were the siblings of Leonhard Euler?"
vector_results = neo4j_vector.similarity_search(query, k=2)
for i, res in enumerate(vector_results):
    print(res.page_content)
    if i != len(vector_results)-1:
        print()
vector_result = vector_results[0].page_content

图片

构建知识图谱

受到 NaLLM 项目的高度启发,我们使用他们的开源项目从非结构化数据构建知识图。

下面是使用 Leonhard Euler 的维基百科文章中的单个文档块构建的知识图。

图片

在深入研究该项目可以学到很多关于使用 LLM 构建知识图谱的知识。例如,以下是从非结构化文本中捕获实体和关系的提示:

"""
You are a data scientist working for a company that is building a graph database. Your task is to extract information from data and convert it into a graph database.
Provide a set of Nodes in the form [ENTITY_ID, TYPE, PROPERTIES] and a set of relationships in the form [ENTITY_ID_1, RELATIONSHIP, ENTITY_ID_2, PROPERTIES].
It is important that the ENTITY_ID_1 and ENTITY_ID_2 exists as nodes with a matching ENTITY_ID. If you can't pair a relationship with a pair of nodes don't add it.
When you find a node or relationship you want to add try to create a generic TYPE for it that  describes the entity you can also think of it as a label.

Example:
Data: Alice lawyer and is 25 years old and Bob is her roommate since 2001. Bob works as a journalist. Alice owns a the webpage www.alice.com and Bob owns the webpage www.bob.com.
Nodes: ["alice", "Person", {"age": 25, "occupation": "lawyer", "name":"Alice"}], ["bob", "Person", {"occupation": "journalist", "name": "Bob"}], ["alice.com", "Webpage", {"url": "www.alice.com"}], ["bob.com", "Webpage", {"url": "www.bob.com"}]
Relationships: ["alice", "roommate", "bob", {"start": 2021}], ["alice", "owns", "alice.com", {}], ["bob", "owns", "bob.com", {}]
"""

有很多有趣的功能,同时可以进行改进。

Neo4j DB QA 链

接下来,我们导入必要的库来设置 Neo4j DB QA 链。

from langchain.chat_models import ChatOpenAI
from langchain.chains import GraphCypherQAChain
from langchain.graphs import Neo4jGraph

构建图表后,我们需要连接到 Neo4jGraph 实例并可视化模式。

graph = Neo4jGraph(
    url=os.environ["NEO4J_URI"], username=os.environ["NEO4J_USERNAME"], password=os.environ["NEO4J_PASSWORD"]
)

print(graph.schema)
Node properties are the following:
[{'labels': 'Person', 'properties': [{'property': 'name', 'type': 'STRING'}, 
{'property': 'nationality', 'type': 'STRING'}, 
{'property': 'death_date', 'type': 'STRING'}, 
{'property': 'birth_date', 'type': 'STRING'}]}, 
{'labels': 'Location', 'properties': [{'property': 'name', 'type': 'STRING'}]}, 
{'labels': 'Organization', 'properties': [{'property': 'name', 'type': 'STRING'}]}, 
{'labels': 'Publication', 'properties': [{'property': 'name', 'type': 'STRING'}]}]

Relationship properties are the following:
[]
The relationships are the following:
['(:Person)-[:worked_at]->(:Organization)', 
'(:Person)-[:influenced_by]->(:Person)', 
'(:Person)-[:born_in]->(:Location)', 
'(:Person)-[:lived_in]->(:Location)', 
'(:Person)-[:child_of]->(:Person)', 
'(:Person)-[:sibling_of]->(:Person)', 
'(:Person)-[:published]->(:Publication)']

抽象 GraphCypherQAChain 所有细节并输出自然语言问题(NLQ)的自然语言响应。然而,在内部,它使用 LLM 生成该问题的 Cypher 查询,并从图形数据库中检索结果,最后使用该结果生成最终的自然语言响应,再次使用 LLM。

chain = GraphCypherQAChain.from_llm(
    ChatOpenAI(temperature=0), graph=graph, verbose=True
)

graph_result = chain.run("Who were the siblings of Leonhard Euler?")

图片

graph_result
'The siblings of Leonhard Euler were Maria Magdalena and Anna Maria.'

Mistral-7b-指令

我们在 AWS SageMaker 环境中从 Hugging Face 设置 Mistral-7B 终端节点。

import json
import sagemaker
import boto3
from sagemaker.huggingface import HuggingFaceModel, get_huggingface_llm_image_uri

try:
    role = sagemaker.get_execution_role()
except ValueError:
    iam = boto3.client('iam')
    role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn']
    
hub = {
    'HF_MODEL_ID':'mistralai/Mistral-7B-Instruct-v0.1',
    'SM_NUM_GPUS': json.dumps(1)
}

huggingface_model = HuggingFaceModel(
    image_uri=get_huggingface_llm_image_uri("huggingface",version="1.1.0"),
    env=hub,
    role=role, 
)

最终响应是通过构造提示来制作的,该提示包括指令、向量索引中的相关数据、图形数据库中的相关信息以及用户的查询。

然后将此提示传递给 Mistral-7b 模型,模型根据提供的信息生成有意义且准确的响应。

mistral7b_predictor = huggingface_model.deploy(
    initial_instance_count=1,
    instance_type="ml.g5.4xlarge",
    container_startup_health_check_timeout=300,
)

query = "Who were the siblings of Leonhard Euler?"
final_prompt = f"""You are a helpful question-answering agent. Your task is to analyze 
and synthesize information from two sources: the top result from a similarity search 
(unstructured information) and relevant data from a graph database (structured information). 
Given the user's query: {query}, provide a meaningful and efficient answer based 
on the insights derived from the following data:

Unstructured information: {vector_result}. 
Structured information: {graph_result}.
"""

response = mistral7b_predictor.predict({
    "inputs": final_prompt,
})

print(re.search(r"Answer: (.+)", response[0]['generated_text']).group(1))
The siblings of Leonhard Euler were Maria Magdalena and Anna Maria.

要点

Neo4j 向量检索与 GraphCypherQAChainMistral-7b 的集成提供了一个强大的系统来处理复杂数据,有效地弥合了大量非结构化数据和复杂的图形知识之间的差距,通过综合两个数据源的信息,为用户查询提供全面、准确的响应。

利用 Neo4j 进行向量相似性搜索和图形数据库检索,可确保生成的响应不仅通过 Mistral-7b 的大量预先训练的知识获得信息,而且还通过来自向量和图形数据库的实时数据进行上下文丰富和验证。

最后,作者的目标是在未来的实验中尝试多跳查询,因为最初建立模块化管道对于适应快速发展的人工智能领域是必要的。

04 总结

该项目强调了 Neo4j Vector Index 和 LangChain 的有效组合,GraphCypherQAChain 分别可以浏览非结构化数据和图形知识,然后使用 Mistral-7b 生成明智且准确的响应。

通过使用 Neo4j 从向量索引和图形数据库检索相关信息,系统确保生成的响应不仅上下文丰富,而且锚定在经过验证的实时知识中。

该实现展示了检索增强生成的实际应用,其中利用来自不同数据源的综合信息来生成响应,这些响应是预先训练的知识和特定的实时数据的和谐混合,从而提高了预测的准确性和相关性。对用户查询的响应。

参考资料

https://medium.com/neo4j/enhanced-qa-integrating-unstructured-and-graph-knowledge-using-neo4j-and-langchain-6abf6fc24c27

https://github.com/neo4j/NaLLM/tree/main

https://medium.com/neo4j/harnessing-large-language-models-with-neo4j-306ccbdd2867

https://medium.com/neo4j/knowledge-graphs-llms-fine-tuning-vs-retrieval-augmented-generation-30e875d63a35

https://medium.com/neo4j/knowledge-graphs-llms-multi-hop-question-answering-322113f53f51

https://medium.com/neo4j/langchain-library-adds-full-support-for-neo4j-vector-index-fa94b8eab334

https://mistral.ai/news/announcing-mistral-7b/

https://www.youtube.com/watch?v=Hg4ahTQlBm0

  • 20
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 知识图谱通过graphvis和neo4j实现可视化是为了更直观地展示和理解知识图谱中的信息和关系。graphvis是一种常用的形可视化工具,它可以将形数据转换为形表示,并通过布局算法使得形更加美观和易于理解。而neo4j是一种数据库,它可以有效地存储和查询形数据,并提供了灵活的数据建模和查询方式。 在知识图谱中,节点代表实体或概念,边代表实体之间的关系或连接。通过使用graphvis,我们可以将知识图谱的节点和边转换为形表示,并根据节点的属性和边的权重等信息进行可视化,以方便用户观察和分析知识图谱中的关系和组织结构。graphvis具有丰富的形布局算法,可以根据节点和边的特征,自动调整和优化形布局,使得形更加美观和易于理解。 而neo4j作为一种数据库,可以提供高效的存储和查询知识图谱数据的方式。它可以存储大规模的形数据,并提供高性能的形查询功能。通过对知识图谱数据建模和存储到neo4j中,我们可以使用neo4j的查询语言Cypher来进行复杂的形查询和分析,从而发现隐藏在知识图谱中的模式和关联。结合graphvis的可视化能力,我们可以将查询结果通过形表示展示出来,使得用户能够更方便地理解和发现知识图谱中的信息。 综上所述,知识图谱通过graphvis和neo4j实现可视化,可以将复杂的知识图谱数据以直观、美观的形方式展示给用户,帮助用户更好地理解和分析知识图谱中的信息和关系。 ### 回答2: 知识图谱是一种表示和组织知识的方式,可以通过形化的方式来展示和理解复杂的知识网络。在知识图谱的可视化中,Graphvis和Neo4j是两种常用的工具。 Graphvis是一个开源的形可视化工具,可以根据输入的数据生成各种类型的形。它使用一种称为“dot”的语言描述形结构,可以将数据转换为节点和边的形式,并根据设定的规则和布局算法自动生成形。Graphvis支持多种布局算法,如层级布局、圆形布局和力导向布局等,可以根据需求选择合适的布局方式。通过Graphvis,可以将知识图谱的结构和关系以形的形式直观地展示出来,便于用户进行浏览和理解。 Neo4j是一种数据库管理系统,专门用于存储和查询形结构的数据。它使用一个灵活的数据模型,可以将数据存储为节点和关系的方式。Neo4j提供了一种叫做Cypher的查询语言,可以方便地进行形数据的查询和分析。通过Neo4j,可以将知识图谱的数据存储在数据库中,并通过查询语言来获取和分析数据。而且,Neo4j还提供了一个可视化工具,可以直接在界面上展示知识图谱的结构和关系。 综上所述,知识图谱的可视化可以通过Graphvis和Neo4j来实现。Graphvis可以根据数据自动生成形,Neo4j可以将数据存储在数据库中,并提供查询和可视化工具。两者的结合可以使知识图谱的可视化更加方便和直观。 ### 回答3: 知识图谱是一种用于表示和组织知识结构化模型,可以通过形可视化的方式展示其内部的关系和连接。在知识图谱的可视化过程中,常常使用到两个主要的工具,即GraphVis和Neo4j。 GraphVis是一种用于绘制形的开源工具,它能够将知识图谱的节点和边缘以形化的方式展示出来。通过GraphVis,我们可以直观地看到知识图谱中的各种实体和它们之间的关联关系。同时,GraphVis还提供了丰富的可视化效果和交互功能,使得用户能够更好地理解和探索知识图谱。 而Neo4j则是一种数据库技术,它提供了强大的存储和查询功能,能够高效地存储和处理知识图谱中的大量数据。通过Neo4j,我们可以将知识图谱中的实体和关系以形化的形式存储在数据库中,并通过灵活的查询语言进行信息的检索和分析。同时,Neo4j还支持形可视化,可以将存储在数据库中的知识图谱数据呈现为直观的形展示。 综上所述,知识图谱通过GraphVis和Neo4j的协同使用,可以实现知识图谱的有效可视化。GraphVis提供了丰富的形化展示效果和交互功能,能够直观地展示知识图谱中的实体和关联关系;而Neo4j则提供了高效的数据库技术,能够存储和查询庞大的知识图谱数据,并支持形可视化展示。这样的可视化方式能够帮助用户更好地理解和探索知识图谱,从而提供更加丰富和深入的知识分析和应用服务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值