全排列问题(回溯算法和深搜)

题目:P1706 全排列问题 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

#include<bits/stdc++.h>
using namespace std;

int n,pd[110];//用来标记数字是否被使用过
int a[10];
void print(){
	for(int i=1;i<=n;i++) cout<<setw(5)<<a[i];
	cout<<endl;
}

void dfs(int k){
	if(k==n){
		print();
		return;
	}
	for(int i=1;i<=n;i++){ //循环填数 
		if(!pd[i]){ //这个数没有被用过 
			pd[i]=1; //标记一下 ,已被使用 
			a[k+1]=i; //把这个数填入数组 
			dfs(k+1); //填下一个 
			pd[i]=0; //回溯 
		}
	}
}

signed main(){
	std::ios::sync_with_stdio(false);
	std::cin.tie(NULL);
	cin>>n;
	dfs(0);
	return 0;
}

 从这道题学会的:

  • 回溯算法的应用,在这段代码中有 pd[i]=0;表回溯。
  • 回溯的意义是:

    回溯是为了在尝试了一个分支后,能够进行下一个分支的尝试,确保所有的可能性都被尝试到。

    具体来说,在生成排列的过程中,当尝试填入某个位置的数字后,需要进行递归,填下一个位置的数字。但填入下一个数字之前,需要标记当前尝试的数字已经被使用过,以避免在同一个排列中重复使用该数字。而在尝试了某一条分支后,需要进行回溯,取消对该数字的使用标记,以便在尝试其他分支时,该数字可以被重新使用。

    回溯是为了在深度优先搜索的过程中,恢复当前状态,以便尝试其他可能的选择。在该代码中,pd[i]=0 的作用就是取消对数字 i 的使用标记,以便进行下一个选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值