【优化调度】基于遗传算法的公交车调度排班优化的研究与实现(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于遗传算法的公交车调度排班优化研究

一、遗传算法的基本原理及在调度问题中的应用

二、公交车调度排班问题的建模与约束条件

三、适应度函数设计的关键要素

四、遗传算法参数设置对调度效果的影响

五、数据集获取与测试案例

六、遗传算法与传统方法的性能对比

七、研究展望与挑战

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


💥1 概述

基于遗传算法的公交车调度排班优化研究

一、遗传算法的基本原理及在调度问题中的应用
  1. 遗传算法核心机制
    遗传算法(GA)通过模拟生物进化过程(选择、交叉、变异)解决优化问题,其核心步骤包括:

    • 编码:将调度方案转化为染色体(如整数编码表示班次发车时间或车辆路径)。
    • 适应度函数:评估调度方案的优劣,如结合乘客等待时间、运营成本等指标。
    • 选择操作:基于适应度值筛选优质个体(如轮盘赌选择或锦标赛选择)。
    • 交叉与变异:通过基因重组(如顺序交叉OX)和随机扰动(如插入变异)增强种群多样性。
  2. 在调度问题中的优势

    • 全局搜索能力:适合处理多约束、非线性的复杂问题(如发车间隔、车辆容量限制)。
    • 多目标优化:可平衡乘客满意度(等待时间)与运营成本(车辆数、行驶距离)。
    • 并行计算:适用于大规模公交网络的高效求解。

二、公交车调度排班问题的建模与约束条件
  1. 优化目标

    • 乘客端:最小化平均等待时间、提高满载率均衡性。
    • 运营端:最小化总行驶距离、车辆使用数及能源消耗(如电动公交电量约束)。
  2. 关键约束条件

    • 时间窗约束
  • 发车间隔限制(如早高峰最小间隔2分钟,非高峰最大间隔15分钟)。

  • 订单服务时间窗口(确保乘客上下车时间在预期范围内)。

  • 数学表达
    ET_i \leq t_{i,k} \leq LT_i \quad \text{(任务i的开始时间在[ET_i, LT_i]内)}

    • 车辆容量限制
  • 最大载客量(如公交车座位数限制)。

  • 数学表达
    ∑i=1Nqixi≤C(车辆k在任务i时的载客量不超过C)∑i=1N​qi​xi​≤C(车辆k在任务i时的载客量不超过C)

    • 其他约束:车辆路径连续性、充电桩使用限制(电动公交)。

三、适应度函数设计的关键要素
  1. 设计原则

    • 问题导向性:需反映调度目标,如将乘客等待时间与运营成本加权组合。
    • 区分度与效率:快速计算且能明确区分优劣方案(如非线性函数优于线性函数)。
    • 避免局部最优:通过惩罚项处理违反约束的方案(如超载或超时)。
  2. 示例函数

    Fitness=α⋅乘客等待时间+β⋅运营成本+γ⋅约束违反惩罚Fitness=α⋅乘客等待时间+β⋅运营成本+γ⋅约束违反惩罚

    其中,α,β,γα,β,γ为权重系数,需根据实际需求调整。


四、遗传算法参数设置对调度效果的影响
  1. 参数优化策略

    • 种群规模:通常取50-100,规模过小易早熟,过大则计算成本高。
    • 交叉率(0.4-0.9) :高交叉率增强搜索广度,但可能破坏优良基因。
    • 变异率(0.01-0.1) :低变异率保持稳定性,高变异率增强多样性。
    • 终止条件:迭代次数(如500代)或适应度值稳定阈值。
  2. 实验验证

    • 案例显示,参数设置为种群50、交叉率0.7、变异率0.1时,算法收敛速度与解质量较优。

五、数据集获取与测试案例
  1. 数据来源

    • 公交IC卡与GPS数据:获取乘客上下车时间、站点客流分布。

    • 传感器数据:实时监控车辆位置、载客量及电池状态(电动公交)。
  2. 典型测试案例

    • 哈尔滨市公交线路:通过调整发车间隔与首班车时间,乘客出行时间减少15%。
    • 南京公交IC卡分析:结合历史数据优化高峰时段发车频率,满载率均衡性提升20%。

六、遗传算法与传统方法的性能对比
  1. 对比指标

    • 收敛速度:GA在复杂问题中收敛更快(如改进GA比传统GA快30%)。
    • 解的质量:GA在多目标优化中更优(如碳排放减少38吨,成本降低2.95万元)。
    • 可扩展性:GA适合动态调整(如实时客流变化),而线性规划难以处理非线性约束。
  2. 案例结果

    • 水土保持项目调度中,GA比传统表上作业法节省运费13.75万元。

七、研究展望与挑战
  1. 改进方向

    • 混合算法:结合粒子群优化(PSO)或禁忌搜索提升局部搜索能力。
    • 动态适应度函数:根据实时客流调整权重系数(如高峰时段侧重乘客体验)。
  2. 实际应用难点

    • 数据实时性:需与GPS、客流预测系统集成以实现动态调度。
    • 计算效率:大规模路网需设计并行计算框架(如分布式GA)。

📚2 运行结果

 

主函数代码:

clear;clc;close all
%% 载入模型参数
LoadData();

%% 参数设置
PopSize = 50;
MaxGen = 100;
plt = 1; % 运行过程是否实时画迭代优化图,默认关闭(可极大提高运行速度)

%% 初始化
Population = Init(PopSize);
ConvergenceObj = zeros(2,PopSize);
ConvergenceCon = zeros(2,PopSize);

% return
%% 开始优化求解
h = figure();
for gen = 1:MaxGen
    MatingPool = randperm(PopSize,PopSize); %父代挑选
    Offspring = GA(Population(MatingPool)); %进行交叉变异操作
    Population = EnviornmentalSelection(Population,Offspring,gen/MaxGen); %挑选子代
    RecordInfo(); % 记录迭代优化信息
end
BestSol = BestInd(end);
disp(['发车时间间隔:' num2str(BestSol.decs)])
disp(['时段发车数量:' num2str(floor(60./BestSol.decs))])
disp(['乘客总时间成本:' num2str(BestSol.Q) ', 公交公司运行费用:' num2str(BestSol.G)])
disp(['总体载客率:' num2str(100*BestSol.zaikelv) '%'])
figure
yyaxis right
plot(BestSol.decs,'-s','linewidth',2)
ylabel('发车时间间隔/分钟')
hold on
yyaxis left
plot(bus.C,'-d','linewidth',2)
ylabel('客流量')
xlabel('时段')

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张文贵.基于遗传算法的公交车辆调度优化研究[D].中国地质大学(北京)[2024-04-21].DOI:CNKI:CDMD:2.2007.066661.

[2]杨海荣.基于改进遗传算法的公交车辆调度优化[J].长沙理工大学学报(自然科学版),2009,6(02):13-17.

[3]姚纯,李茂军.公交车辆优化调度问题及其单亲遗传算法[J].计算机工程与科学,2011,33(11):75-79.

[4]郑波.遗传算法在公交车辆调度优化中的应用研究[D].南京农业大学,2014. 

🌈4 Matlab代码、数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值