💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
基于遗传算法的公交车调度排班优化研究
一、遗传算法的基本原理及在调度问题中的应用
-
遗传算法核心机制
遗传算法(GA)通过模拟生物进化过程(选择、交叉、变异)解决优化问题,其核心步骤包括:- 编码:将调度方案转化为染色体(如整数编码表示班次发车时间或车辆路径)。
- 适应度函数:评估调度方案的优劣,如结合乘客等待时间、运营成本等指标。
- 选择操作:基于适应度值筛选优质个体(如轮盘赌选择或锦标赛选择)。
- 交叉与变异:通过基因重组(如顺序交叉OX)和随机扰动(如插入变异)增强种群多样性。
-
在调度问题中的优势
- 全局搜索能力:适合处理多约束、非线性的复杂问题(如发车间隔、车辆容量限制)。
- 多目标优化:可平衡乘客满意度(等待时间)与运营成本(车辆数、行驶距离)。
- 并行计算:适用于大规模公交网络的高效求解。
二、公交车调度排班问题的建模与约束条件
-
优化目标
- 乘客端:最小化平均等待时间、提高满载率均衡性。
- 运营端:最小化总行驶距离、车辆使用数及能源消耗(如电动公交电量约束)。
-
关键约束条件
- 时间窗约束:
-
发车间隔限制(如早高峰最小间隔2分钟,非高峰最大间隔15分钟)。
-
订单服务时间窗口(确保乘客上下车时间在预期范围内)。
-
数学表达:
ET_i \leq t_{i,k} \leq LT_i \quad \text{(任务i的开始时间在[ET_i, LT_i]内)}- 车辆容量限制:
-
最大载客量(如公交车座位数限制)。
-
数学表达:
∑i=1Nqixi≤C(车辆k在任务i时的载客量不超过C)∑i=1Nqixi≤C(车辆k在任务i时的载客量不超过C)- 其他约束:车辆路径连续性、充电桩使用限制(电动公交)。
三、适应度函数设计的关键要素
-
设计原则
- 问题导向性:需反映调度目标,如将乘客等待时间与运营成本加权组合。
- 区分度与效率:快速计算且能明确区分优劣方案(如非线性函数优于线性函数)。
- 避免局部最优:通过惩罚项处理违反约束的方案(如超载或超时)。
-
示例函数
Fitness=α⋅乘客等待时间+β⋅运营成本+γ⋅约束违反惩罚Fitness=α⋅乘客等待时间+β⋅运营成本+γ⋅约束违反惩罚
其中,α,β,γα,β,γ为权重系数,需根据实际需求调整。
四、遗传算法参数设置对调度效果的影响
-
参数优化策略
- 种群规模:通常取50-100,规模过小易早熟,过大则计算成本高。
- 交叉率(0.4-0.9) :高交叉率增强搜索广度,但可能破坏优良基因。
- 变异率(0.01-0.1) :低变异率保持稳定性,高变异率增强多样性。
- 终止条件:迭代次数(如500代)或适应度值稳定阈值。
-
实验验证
- 案例显示,参数设置为种群50、交叉率0.7、变异率0.1时,算法收敛速度与解质量较优。
五、数据集获取与测试案例
-
数据来源
- 公交IC卡与GPS数据:获取乘客上下车时间、站点客流分布。
- 传感器数据:实时监控车辆位置、载客量及电池状态(电动公交)。
- 公交IC卡与GPS数据:获取乘客上下车时间、站点客流分布。
-
典型测试案例
- 哈尔滨市公交线路:通过调整发车间隔与首班车时间,乘客出行时间减少15%。
- 南京公交IC卡分析:结合历史数据优化高峰时段发车频率,满载率均衡性提升20%。
六、遗传算法与传统方法的性能对比
-
对比指标
- 收敛速度:GA在复杂问题中收敛更快(如改进GA比传统GA快30%)。
- 解的质量:GA在多目标优化中更优(如碳排放减少38吨,成本降低2.95万元)。
- 可扩展性:GA适合动态调整(如实时客流变化),而线性规划难以处理非线性约束。
-
案例结果
- 水土保持项目调度中,GA比传统表上作业法节省运费13.75万元。
七、研究展望与挑战
-
改进方向
- 混合算法:结合粒子群优化(PSO)或禁忌搜索提升局部搜索能力。
- 动态适应度函数:根据实时客流调整权重系数(如高峰时段侧重乘客体验)。
-
实际应用难点
- 数据实时性:需与GPS、客流预测系统集成以实现动态调度。
- 计算效率:大规模路网需设计并行计算框架(如分布式GA)。
📚2 运行结果
主函数代码:
clear;clc;close all
%% 载入模型参数
LoadData();
%% 参数设置
PopSize = 50;
MaxGen = 100;
plt = 1; % 运行过程是否实时画迭代优化图,默认关闭(可极大提高运行速度)
%% 初始化
Population = Init(PopSize);
ConvergenceObj = zeros(2,PopSize);
ConvergenceCon = zeros(2,PopSize);
% return
%% 开始优化求解
h = figure();
for gen = 1:MaxGen
MatingPool = randperm(PopSize,PopSize); %父代挑选
Offspring = GA(Population(MatingPool)); %进行交叉变异操作
Population = EnviornmentalSelection(Population,Offspring,gen/MaxGen); %挑选子代
RecordInfo(); % 记录迭代优化信息
end
BestSol = BestInd(end);
disp(['发车时间间隔:' num2str(BestSol.decs)])
disp(['时段发车数量:' num2str(floor(60./BestSol.decs))])
disp(['乘客总时间成本:' num2str(BestSol.Q) ', 公交公司运行费用:' num2str(BestSol.G)])
disp(['总体载客率:' num2str(100*BestSol.zaikelv) '%'])
figure
yyaxis right
plot(BestSol.decs,'-s','linewidth',2)
ylabel('发车时间间隔/分钟')
hold on
yyaxis left
plot(bus.C,'-d','linewidth',2)
ylabel('客流量')
xlabel('时段')
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张文贵.基于遗传算法的公交车辆调度优化研究[D].中国地质大学(北京)[2024-04-21].DOI:CNKI:CDMD:2.2007.066661.
[2]杨海荣.基于改进遗传算法的公交车辆调度优化[J].长沙理工大学学报(自然科学版),2009,6(02):13-17.
[3]姚纯,李茂军.公交车辆优化调度问题及其单亲遗传算法[J].计算机工程与科学,2011,33(11):75-79.
[4]郑波.遗传算法在公交车辆调度优化中的应用研究[D].南京农业大学,2014.