R语言统计学-参数估计(求置信区间)、假设检验(总体比例检验、计算效应量)

1、参数估计(两个总体均值差求置信区间)

统计学-基于R-第五版-第六章习题6.3)

        顾客到银行办理业务时往往需要等待一些时间,等待时间的长短与许多因素有关,比如,银行的业务员办理业务的速度、顾客等待排队的方式等。为此,某银行准备采取两种排队方式进行试验,第一种排队方式是所有顾客都进入一个等待队伍;第二种排队方式是顾客在三个业务窗口处排队等待。为比较哪种排队方式使顾客等待的时间更短,银行各随机抽取10名顾客,他们在办理业务时等待的时间(单位:分钟)如下:

(1)构建第一种排队方式等待时间均值的95%的置信区间。

(2)构建第二种排队方式等待时间方差的95%的置信区间。

(3)构建两种方式排队时间均值差值的95%的置信区间:①假设σ₁²=σ₂²;②假设σ₁²≠σ₂²

        实现代码和结果:

example4<-read.csv("C:/Users/lenovo/OneDrive/大二/大数据统计学实验/实验表格/银行业务办理等待时间表格.csv")
#计算第一种排队方式等待时间均值的95%的置信区间
t.test(example4$方式1)$conf.int
#计算第二种排队方式等待时间方差的95%的置信区间
t.test(example4$方式2)$conf.int

#计算两种方式排队时间均值差值的95%的置信区间
x=example4$方式1;y=example4$方式2
#假设方差σ₁²=σ₂²
t.test(x,y,var.equal = TRUE)$conf.int
#假设方差σ₁²≠σ₂²
t.test(x,y,var.equal = FALSE)$conf.int

        计算结果表示排队方式1等待时间均值95%的置信区间为6.575657~8.324343分钟。排队方式2等待时间均值95%的置信区间为5.846885~8.453115分钟。

        比较两种排队方式的置信水平,直接将各自数据导入t.test函数中,var.equal=TRUE表示方差相等时的情况,var.equal=FALSE表示方差不相等的情况。假设σ₁²=σ₂²时,两种排队方式等待时间均值差值的95%的置信区间为-1.157413~1.757413分钟;假设σ₁²≠σ₂²时,两种排队方式等待时间均值差值的95%的置信区间为-1.172575~1.772575分钟。

2、假设检验(两个总体均值差和总体比例的检验)

统计学-基于R-第五版-第七章习题7.4)

        某企业为比较两种方法对员工培训的效果,采用方法1对15名员工进行培训,采用方法2对另外15名员工进行培训。培训后的测试分数如下:

在α=0.05的显著性水平下,检验两种方法的培训效果是否有显著差异。

(1)假定方差相等。

(2)假定方差不相等。

(3)计算效应量,分析差异程度。

        实现代码和结果:

example5<-read.csv("C:/Users/lenovo/OneDrive/大二/大数据统计学实验/实验表格/员工培训测试数据.csv")
#假设总体方差相等
t.test(example5$方法1,example5$方法2,var.equal=TRUE)
#假设总体方差不相等
t.test(example5$方法1,example5$方法2,var.equal=FALSE)
#计算效应量
library(lsr)
cohensD(example5$方法1,example5$方法2)

        方法1的平均数为47.73333,方法2的平均数为56.73333。假设总体方差相等时,t = -5.8927, df = 28, p-value = 2.444e-06;假设总体方差不相等时,t = -5.8927, df = 27.639, p-value = 2.568e-06。

        效应量d=2.151704,表明方法1和方法2的平均测试分数的样本均值差值与总体均值差值相差2.151704个标准差,根据Cohen准则(独立样本t检验的小、中、大效应量对应的d值分别为0.20、0.50、0.80),该检验结果属于大的效应量。

统计学-基于R-第五版-第七章习题7.5)

        对消费者的一项调查显示,17%的人早餐饮料是牛奶。某城市的牛奶生产商认为,该城市的人早餐饮用牛奶的比例更高。为验证这一说法,生产商随机抽取550人的一个随机样本,其中115人早餐饮用牛奶。检验该生产商的说法是否属实(α=0.05)。

        实现代码和结果:

n<-550     #随机样本数
p<-115/550
pi0<-0.17
z<-(p-pi0)/sqrt(pi0*(1-pi0)/n)
p_value<-1-pnorm(z)
data.frame(z,p_value)

        调查显示17%的人早餐饮料是牛奶,因此提出假设为

        H₀:Π⩽17%;H₁:Π>17%

        在该检验中,z=2.440583,P=0.007331785,由于P<0.05,拒绝H₀,可以证明该生产商的说法属实。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值