题目描述
如题,已知一个数列,你需要进行下面两种操作:
- 将某区间每一个数加上 k。
- 求出某区间每一个数的和。
输入格式
第一行包含两个整数 n,m,分别表示该数列数字的个数和操作的总个数。
第二行包含 n 个用空格分隔的整数,其中第 i 个数字表示数列第 i 项的初始值。
接下来 m 行每行包含 3 或 4 个整数,表示一个操作,具体如下:
1 x y k
:将区间[x,y] 内每个数加上 k。2 x y
:输出区间[x,y] 内每个数的和。
输出格式
输出包含若干行整数,即为所有操作 2 的结果。
输入输出样例
输入 #1
5 5 1 5 4 2 3 2 2 4 1 2 3 2 2 3 4 1 1 5 1 2 1 4
输出 #1
11 8 20
说明/提示
对于 30% 的数据:n≤8,m≤10。
对于 70% 的数据:3n≤103,4m≤104。
对于 100% 的数据:1≤n,m≤105。
保证任意时刻数列中所有元素的绝对值之和 ≤1018≤1018。
【样例解释】
思路:线段树模板,包含的懒操作。线段树是靠一个二叉树进行遍历,每次只需要logn的时间复杂度,懒操作相当于记录当前区间需要该的值,按道理每次修改都需要遍历到每个元素,但是采用懒操作,避免了不必要的修改单一元素区间的值。
代码:
#include<bits/stdc++.h>
using namespace std;
#define int long long
struct node{
int l,r;
int da;
int lz=0;
};
node t[400005];
int a[100005];
int n,m;
void push_down(int i)
{
if(t[i].lz!=0)
{
t[i*2].lz+=t[i].lz;//左右儿子分别加上父亲的lz
t[i*2+1].lz+=t[i].lz;
int mid=(t[i].l+t[i].r)/2;
t[i*2].da+=t[i].lz*(mid-t[i*2].l+1);//左右分别求和加起来
t[i*2+1].da+=t[i].lz*(t[i*2+1].r-mid);
t[i].lz=0;//父亲lz归零
}
return ;
}
int build(int l,int r,int pot){
t[pot].l=l;
t[pot].r=r;
if(l==r){
t[pot].da=a[l];
return t[pot].da;
}
int mid=(l+r)/2;
t[pot].da=build(l,mid,pot*2)+build(mid+1,r,pot*2+1);
return t[pot].da;
}
void updata(int l,int r,int k,int pot){
if(l<=t[pot].l&&t[pot].r<=r){
t[pot].da+=k*(t[pot].r-t[pot].l+1);
t[pot].lz+=k;
return ;
}
push_down(pot);//向下传递
if(t[pot*2].r>=l){
updata(l,r,k,pot*2);
}
if(t[pot*2+1].l<=r){
updata(l,r,k,pot*2+1);
}
t[pot].da=t[pot*2].da+t[pot*2+1].da;
}
int search(int i,int l,int r){
if(t[i].l>=l && t[i].r<=r)
return t[i].da;
if(t[i].r<l || t[i].l>r) return 0;
push_down(i);
int s=0;
if(t[i*2].r>=l) s+=search(i*2,l,r);
if(t[i*2+1].l<=r) s+=search(i*2+1,l,r);
return s;
}
signed main(){
cin>>n>>m;
for(int i=1;i<=n;i++)
cin>>a[i];
build(1,n,1);
while(m--){
int op;
cin>>op;
if(op==1){
int x,y,k;
cin>>x>>y>>k;
updata(x,y,k,1);
}else {
int x,y;
cin>>x>>y;
cout<<search(1,x,y)<<endl;
}
}
return 0;
}