C++: AVL树

你的时间有限, 所以不要为别人而活, 不要被教条所限, 不要活在别人的观念里, 不要让别人的意见左右自己内心的声音. -- 乔布斯


正文开始

博客主页: 酷酷学!!!

1. AVL树的概念

二叉搜素树虽然可以缩短查找的效率, 但如果数据有序或接近有序二叉搜索树将退化为单支树, 查找元素相当于在顺序表中搜索元素, 效率低下, 因此, 两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:
当向二叉搜索树中插入新节点后, 如果能保证每个节点的左右子树高度之差的绝对值不超过1(需要对树中的节点进行调整), 即可降低树的高度, 从而减少平均搜索长度.

一棵AVL树或者是空树, 或者是具有以下性质的二叉搜素树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

在这里插入图片描述
如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 O ( l o g 2 n ) O(log_2 n) O(log2n),搜索时间复杂度O( l o g 2 n log_2 n log2n)。

2. AVL树节点的定义

template<class K,class V>
struct AVLTreeNode
{
	pair<K, V> _kv;
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	int _bf;//balance factor

	AVLTreeNode(const pair<K, V>& kv)
		:_kv(kv)
		, _left(nullptr)
		, _parent(nullptr)
		, _parent(nullptr)
		, _bf(0) 
	{}
};

3. AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

    // 1. 先按照二叉搜索树的规则将节点插入到AVL树中
    // 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性
 /*
 pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
 的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
  1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
  2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
  
  此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
  1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功
  2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新
  3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转处理
 */

	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
		}
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		cur = new Node(kv);
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;

		//更新平衡因子
		while (parent)
		{
			if (cur == parent->_left)
				parent->_bf--;
			else
				parent->_bf++;

			if (parent->_bf == 0)
			{
				break;
			}
			else if (parent->_bf == 1 || parent == -1)
			{
				//祖先受到影响
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				//不平衡了,旋转处理
			}
			else
			{
				assert(false);
			}
		}
		return true;
	}

4. AVL树的旋转

在这里插入图片描述

4.1 左单旋

上述过程可以抽象为 左单旋

在这里插入图片描述

假设h为大于等于0的AVL子树, 做单旋的情况如下

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
编写代码:

	//左单旋
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		subR->_left = parent;
	}

核心代码就是让subRL变成parent的左边, parent变成subR的右边. 但是不要忘了, 我们拥有了parent节点和平衡因子带给我们的遍历, 所以更不要忘了进行维护

	//左单旋
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		subR->_left = parent;

		if (subRL)
			subRL->_parent = parent;
		Node* parentParent = parent->_parent;
		parent->_parent = subR;
		if (parentParent == nullptr)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (parent == parentParent->_left)
				parentParent->_left = subR;
			else
				parentParent->_right = subR;
			subR->_parent = parentParent;
		}
		parent->_bf = subR->_bf = 0;
	}

4.2 右单旋

在这里插入图片描述
有了左单旋的理解, 不难写出右单旋

	//右单旋
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;
		subL->_right = parent;
		Node* parentParent = parent->_parent;
		parent->_parent = subL;
		if (parentParent == nullptr)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
				parentParent->_left = subL;
			else
				parentParent->_right = subL;
			subL->_parent = parentParent;
		}
		parent->_bf = subL->_bf = 0;
	}

4.3 右左单旋

对于这种情况, 左单旋使右边节点多, 把左边压下去, 这中可以解决.
在这里插入图片描述

对于这种情况, 单纯依靠左单旋是无法进行解决的了,因为左单旋会把新subRL给到parent的右边, 所以左右还是达不到平衡
在这里插入图片描述

对于h==1也是一样
在这里插入图片描述
如何解决呢? 先以subR作为旋转点进行右旋,然后再左旋.

在这里插入图片描述
抽象图如下:

在这里插入图片描述

进行一层一层的分析

在这里插入图片描述

但是插入之后我们还需要更改平衡因子,关键看subRL的平衡因子, 是在subRL的左边插入还是右边插入, 所以插入之前我们需要先保存subRL的平衡因子, 再以结果为导向进行直接的修改.

如果subRL为0, 说明使h==0的情况, 此时右左旋转之后三者平衡因子都为0, 其它节点不变, h>0时如下:

在c插入时, 插入时, subRL为1, 最后旋转之后, 平衡因子应更新为parent->_bf = -1.
在这里插入图片描述

在c插入时, 插入时, subRL为-1, 最后旋转之后, 平衡因子应更新为subR->_bf = 1.
在这里插入图片描述

编写代码:

	//右左旋转
	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		RotateR(parent->_right);
		RotateL(parent);

		if (bf == 0)
		{
			subR->_bf = 0;
			subRL->_bf = 0;
			parent->_bf = 0;
		}
		else if (bf == 1)
		{
			subR->_bf = 0;
			subRL->_bf = 0;
			parent->_bf = -1;
		}
		else if (bf == -1)
		{
			subR->_bf = 1;
			subRL->_bf = 0;
			parent->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

4.4 左右单旋

在这里插入图片描述
编写代码:

	//左右单旋
	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		RotateL(parent->_left);
		RotateR(parent);
		if (bf == 0)
		{
			parent->_bf = 0;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
		else if (bf == -1)
		{
			subL->_bf = 0;
			subLR->_bf = 0;
			parent->_bf = 1;
		}
		else if (bf == 1)
		{
			parent->_bf = 0;
			subL->_bf = -1;
			subLR->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

5. 完整代码

#pragma once

#include<assert.h>
#include<iostream>
using namespace std;

template<class K,class V>
struct AVLTreeNode
{
	pair<K, V> _kv;
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	int _bf;//balance factor

	AVLTreeNode(const pair<K, V>& kv)
		:_kv(kv)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _bf(0) 
	{}
};

template<class K,class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	AVLTree()
		:_root(nullptr)
	{}


	AVLTree(const AVLTree<K, V>& t)
	{
		_root = Copy(t._root);
	}

	AVLTree<K, V>& operator=(AVLTree<K, V> t)
	{
		swap(_root, t._root);
		return *this;
	}

	~AVLTree()
	{
		Destory(_root);
		_root = nullptr;
	}

	//插入
	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		cur = new Node(kv);
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;

		//更新平衡因子
		while (parent)
		{
			if (cur == parent->_left)
				parent->_bf--;
			else
				parent->_bf++;

			if (parent->_bf == 0)
			{
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				//祖先受到影响
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				//不平衡了,旋转处理
				if (parent->_bf == 2 && cur->_bf == 1)
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == -1)
				{
					RotateR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == -1)
				{
					RotateRL(parent);
				}
				else
				{
					RotateLR(parent);
				}
				break;
			}
			else
			{
				assert(false);
			}
		}
		return true;
	}

	//查找
	Node* Find(const pair<K, V>& kv)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				cur = cur->_left;
			}
			else
			{
				return cur;
			}
		}
		return nullptr;
	}

	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}

	int Height()
	{
		return _Height(_root);
	}

	bool IsBalanceTree()
	{
		return _IsBalanceTree(_root);
	}


private:

	bool _IsBalanceTree(Node* pRoot)
	{
		// 空树也是AVL树
		if (nullptr == pRoot) return true;
		// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差
		int leftHeight = _Height(pRoot->_left);
		int rightHeight = _Height(pRoot->_right);
		int diff = rightHeight - leftHeight;
		// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
	// pRoot平衡因子的绝对值超过1,则一定不是AVL树
		if (diff != pRoot->_bf || (diff > 1 || diff < -1))
			return false;
		// pRoot的左和右如果都是AVL树,则该树一定是AVL树
		return _IsBalanceTree(pRoot->_left) && _IsBalanceTree(pRoot->_right);
	}

	int _Height(Node* pRoot)
	{
		if (pRoot == nullptr) return 0;
		int heightl = _Height(pRoot->_left);
		int heightr = _Height(pRoot->_right);
		return  heightl > heightr ? heightl + 1 : heightr + 1;
	}

	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}
		_InOrder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_InOrder(root->_right);
	}

	//左单旋
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		subR->_left = parent;

		if (subRL)
			subRL->_parent = parent;
		Node* parentParent = parent->_parent;
		parent->_parent = subR;
		if (parentParent == nullptr)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (parent == parentParent->_left)
				parentParent->_left = subR;
			else
				parentParent->_right = subR;
			subR->_parent = parentParent;
		}
		parent->_bf = subR->_bf = 0;
	}

	//右单旋
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;
		subL->_right = parent;
		Node* parentParent = parent->_parent;
		parent->_parent = subL;
		if (parentParent == nullptr)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
				parentParent->_left = subL;
			else
				parentParent->_right = subL;
			subL->_parent = parentParent;
		}
		parent->_bf = subL->_bf = 0;
	}

	//右左旋转
	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		RotateR(parent->_right);
		RotateL(parent);

		if (bf == 0)
		{
			subR->_bf = 0;
			subRL->_bf = 0;
			parent->_bf = 0;
		}
		else if (bf == 1)
		{
			subR->_bf = 0;
			subRL->_bf = 0;
			parent->_bf = -1;
		}
		else if (bf == -1)
		{
			subR->_bf = 1;
			subRL->_bf = 0;
			parent->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}
	//左右单旋
	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		RotateL(parent->_left);
		RotateR(parent);
		if (bf == 0)
		{
			parent->_bf = 0;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
		else if (bf == -1)
		{
			subL->_bf = 0;
			subLR->_bf = 0;
			parent->_bf = 1;
		}
		else if (bf == 1)
		{
			parent->_bf = 0;
			subL->_bf = -1;
			subLR->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}


	void Destory(Node* root)
	{
		if (root == nullptr) return;
		Destory(root->_left);
		Destory(root->_right);
		delete root;
	}

	AVLTree* Copy(Node* root)
	{
		if (root == nullptr)
			return nullptr;
		Node* newnode = new Node(root->_kv);
		newnode->_left = Copy(root->_left);
		newnode->_right = Copy(root->_right);
		return newnode;
	}
	Node* _root;
};

测试

VL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树
    如果中序遍历可得到一个有序的序列,就说明为二搜索树
  2. 验证其为平衡树
    每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)节点的平衡因子是否计算正确
	bool _IsBalanceTree(Node* pRoot)
	{
		// 空树也是AVL树
		if (nullptr == pRoot) return true;
		// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差
		int leftHeight = _Height(pRoot->_left);
		int rightHeight = _Height(pRoot->_right);
		int diff = rightHeight - leftHeight;
		// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
	// pRoot平衡因子的绝对值超过1,则一定不是AVL树
		if (diff != pRoot->_bf || (diff > 1 || diff < -1))
			return false;
		// pRoot的左和右如果都是AVL树,则该树一定是AVL树
		return _IsBalanceTree(pRoot->_left) && _IsBalanceTree(pRoot->_right);
	}

	int _Height(Node* pRoot)
	{
		if (pRoot == nullptr) return 0;
		int heightl = _Height(pRoot->_left);
		int heightr = _Height(pRoot->_right);
		return  heightl > heightr ? heightl + 1 : heightr + 1;
	}
//avl.h

void TestAVLTree()
{
	AVLTree<int, int> t;
	//int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
	int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14};
	for (auto e : a)
	{
		t.Insert({ e, e });
	}
	//cout << t.Height() << endl;
	
	t.InOrder();
	cout << t.IsBalanceTree() << endl;
}

//test.c

#include"avl.h"

int main()
{
	TestAVLTree();
	return 0;
}

在这里插入图片描述

6. AVL树的删除(了解)

因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。(面试一般不考察)

在这里插入图片描述

具体实现可参考《算法导论》或《数据结构-用面向对象方法与C++描述》殷人昆版。

7. AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

总结

假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑

  1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR
  • 当pSubR的平衡因子为1时,执行左单旋
  • 当pSubR的平衡因子为-1时,执行右左双旋
  1. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL
  • 当pSubL的平衡因子为-1是,执行右单旋
  • 当pSubL的平衡因子为1时,执行左右双旋

旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。


评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酷酷学!!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值