【C++算法竞赛 · 图论】图的存储

前言

图的存储

邻接矩阵

方法

复杂度

应用

例题

题解

邻接表

方法

复杂度

应用


前言

上一篇文章中(【C++算法竞赛 · 图论】图论基础),介绍了图论相关的概念和一种图的存储的方法,这篇文章将会介绍剩下的两种方法,话不多说,步入正题——

图的存储

邻接矩阵

方法

使用一个二维数组 G 来存边,其中 G[u][v] 1 表示存在 u 到 v 的边,为 0 表示不存在。如果是带边权的图,可以在 G[u][v] 中存储 u v 的边的边权。

复杂度

查询是否存在某条边:O(1) 

遍历一个点的所有出边:O(n)

遍历整张图:O(n^{2})

空间复杂度:O(n^{2})

应用

邻接矩阵只适用于没有重边(或重边可以忽略)的情况。

其最显著的优点是可以 O(1) 查询一条边是否存在。

由于邻接矩阵在稀疏图上效率很低(尤其是在点数较多的图上,空间无法承受),所以一般只会在稠密图上使用邻接矩阵。

例题

题目描述

给定一张 N 个顶点 M 条边的简单无向图。顶点编号为 1 ... N

i 条边 (1 <= i <= M) 连接顶点 U_i 和顶点 V_i 。

请求出满足以下所有条件的三元组 (a, b, c) 组的总数。

  • 1 <= a, b, c <= N
  • 存在连接顶点 a 和顶点 b 的边。
  • 存在连接顶点 a 和顶点 c 的边。
  • 存在连接顶点 b 和顶点 c 的边。

3 <= N <= 100

输入格式

N M

U_1 V_1

...

U_M V_M 

输出格式

输出答案。

样例

输入样例 1

5 6
1 5
4 5
2 3
1 4
3 5
2 5

输出样例 1

2

输入样例 2

3 1

1 2

输出样例 2

0

输入样例 3

7 10
1 7
5 7
2 5
3 6
4 7
1 5
2 4
1 3
1 6
2 7

输出样例 3

4

题解

这题很简单,直接用二维数组去存储,然后枚举三个节点(数据量很小)判断是否都有边连接就行了。

#include <bits/stdc++.h>
using namespace std;

int G[110][110];

int main() {
	memset(G, 0, sizeof(G));
	int n, m;
	cin >> n >> m;
	for (int i = 0; i < m; i++) {
		int u, v;
		cin >> u >> v;
		G[u][v] = 1;
		G[v][u] = 1;
	}
	int cnt = 0;
	for (int a = 1; a <= n; a++) {
		for (int b = a + 1; b <= n; b++) {
			for (int c = b + 1; c <= n; c++) {
				if (G[a][b] == 1 && G[a][c] == 1 && G[b][c] == 1) {
					cnt++;
				}
			}
		}
	}
	cout << cnt;
	return 0;
}

邻接表

方法

使用一个支持动态增加元素的数据结构构成的数组,如 vector<int> adj[n + 1] 来存边,其中 adj[u] 存储的是点 u 的所有出边的相关信息(终点、边权等)。

复杂度

查询是否存在 u 到 v 的边:O(d^{+}(u))(如果事先进行了排序就可以使用 二分查找 做到 O(log(d^{+}(u))) )。

遍历点 u 的所有出边:O(d^{+}(u))

遍历整张图:O(n + m)

空间复杂度:O(m)

应用

存各种图都很适合,除非有特殊需求(如需要快速查询一条边是否存在,且点数较少,可以使用邻接矩阵)。

尤其适用于需要对一个点的所有出边进行排序的场合。


本文就到这里了,如果有帮助的话,记得点赞收藏!下次再见啦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值