C++实现图的存储和遍历

前言

        许多新手友友在初学算法和数据结构时,会被图论支配过。我这里整理了一下图论常见的存储和遍历方式,仅供参考。如有问题,欢迎大佬们批评指正。

        存储我将提到四种方式:邻接矩阵、vector实现邻接表、数组模拟单链表实现的前向星实现邻接表、结构体数组直接存储边。遍历我将提到三种方式:dfs、bfs、按照边的权重值大小遍历输出。

一、邻接矩阵

#include <iostream>
#include <cstring>
#include <queue>
#include <functional>
constexpr int MAX_N = 1e3+5;
int g[MAX_N][MAX_N];
bool vis[MAX_N];
int main(){
	//取消同步流,加快输入输出 
	std::cin.tie(nullptr)->sync_with_stdio(false);
	
	//图的存储方式 1:邻接矩阵
	int n;std::cin >> n;
	for(int i = 1;i<=n;++i){
		for(int j = 1;j<=n;++j){
			std::cin >> g[i][j];
		}
	}
	
	//邻接矩阵的 dfs遍历
	memset(vis,false,sizeof vis);
	vis[1] = true;
	using Dfs = std::function<void(int)>;//目的是为了让 dfs函数可以进行递归 
	Dfs dfs = [&](int u)->void{//lambda表达式(函数) 
		std::cout << u << ' ';
		for(int i = 1;i<=n;++i){
			if(!vis[i]&&g[u][i]){
				vis[i]=true;
				dfs(i);
			}
		}
	};
	dfs(1);
	std::cout << '\n';
	
	//邻接矩阵的 bfs遍历
	auto bfs = [&]()->void{
		memset(vis,false,sizeof vis);
		std::queue<int> q;
		q.emplace(1);//emplace取代 push,可以加快运行速度 
		vis[1] = true;
		while(!q.empty()){
			auto t = q.front();
			q.pop();
			std::cout << t << ' ';
			for(int i = 1;i<=n;++i){
				if(!vis[i]&&g[t][i]){
					vis[i] = true;
					q.emplace(i);
				}
			}
		}
	};
	bfs();
	std::cout << '\n';
	
	return 0;
}

        测试

二、 vector实现邻接表

#include <iostream>
#include <vector>
#include <cstring>
#include <queue>
#include <functional>
constexpr int MAX_N = 1e3+5,MAX_M = 1e6+5;
std::vector<std::pair<int,int>> edges[MAX_N];
bool vis[MAX_N];
int main(){
	std::cin.tie(nullptr)->sync_with_stdio(false);
	
	//图的存储方式 2:vector实现邻接表 
	int n,m;std::cin >> n >> m;
	while(m--){
		int x,y,w;std::cin >> x >> y >> w;
		//假设没有重边,无向边需要加两条边
		edges[x].emplace_back(y,w);
		edges[y].emplace_back(x,w);
	}
	
	//vector实现邻接表的 dfs遍历
	memset(vis,false,sizeof vis);
	vis[1] = true;
	using Dfs = std::function<void(int)>;
	Dfs dfs = [&](int u)->void{
		std::cout << u << ' ';
		for(int i = 0;i<edges[u].size();++i){
			if(!vis[edges[u][i].first]){
				vis[edges[u][i].first]=true;
				dfs(edges[u][i].first);
			}
		}
	};
	dfs(1);
	std::cout << '\n';
	
	//vector实现邻接表的 bfs遍历
	auto bfs = [&]()->void{
		memset(vis,false,sizeof vis);
		std::queue<int> q;
		q.emplace(1);
		vis[1] = true;
		while(!q.empty()){
			auto t = q.front();
			q.pop();
			std::cout << t << ' ';
			for(int i = 0;i<edges[t].size();++i){
				if(!vis[edges[t][i].first]){
					vis[edges[t][i].first] = true;
					q.emplace(edges[t][i].first);
				}
			}
		}
	};
	bfs();
	std::cout << '\n';
	
	return 0;
}

        测试

三、 数组模拟单链表实现的前向星实现邻接表

#include <iostream>
#include <cstring>
#include <queue>
#include <functional>
constexpr int MAX_N = 1e3+5,MAX_M = 1e6+5;
//h数组为头节点,值表示下一个节点的下标,值为 -1则表示指向 NULL(nullptr)
//有 idx到 e[idx]的边,权值为 w[idx],ne[idx]是 idx的下一个节点的下标 
int h[MAX_N],e[MAX_M],w[MAX_M],ne[MAX_M],idx;
bool vis[MAX_N];
int main(){
	std::cin.tie(nullptr)->sync_with_stdio(false);
	
	//图的存储方式 3:前向星实现邻接表
	//采用数组模拟单链表来实现前向星
	auto init = [&]()->void{
		memset(h,-1,sizeof h);//头结点初始值为 -1,表示 next指向 NULL(nullptr) 
		idx = 0;//下标从 0开始 
	};
	//注意这里是头插法,遍历的时候顺序是反的
	//但是大多数时候求最短路或者最小生成树不关注这个顺序 
	auto add = [&](int x,int y,int z)->void{
		//先勾右链,再勾左链
		e[idx]=y,w[idx]=z,ne[idx]=h[x],h[x]=idx++;
	};
	init();
	int n,m;std::cin >> n >> m;
	while(m--){
		int x,y,z;std::cin >> x >> y >> z;
		add(x,y,z),add(y,x,z);
	}
	
	//前向星实现邻接表的 dfs遍历
	memset(vis,false,sizeof vis);
	vis[1] = true;
	using Dfs = std::function<void(int)>;
	Dfs dfs = [&](int u)->void{
		std::cout << u << ' ';
		for(int i = h[u];~i;i=ne[i]){
			int j = e[i];
			if(!vis[j]){
				vis[j] = true;
				dfs(j);
			}
		} 
	};
	dfs(1);
	std::cout << '\n';
	
	//前向星实现邻接表的 bfs遍历
	auto bfs = [&]()->void{
		memset(vis,false,sizeof vis);
		std::queue<int> q;
		q.emplace(1);
		vis[1] = true;
		while(!q.empty()){
			auto t = q.front();
			q.pop();
			std::cout << t << ' ';
			for(int i = h[t];~i;i=ne[i]){
				int j = e[i];
				if(!vis[j]){
					vis[j] = true;
					q.emplace(j);
				}
			}
		}
	};
	bfs();
	std::cout << '\n';
	
	return 0;
}

        测试

四、 结构体数组直接存储边

#include <iostream>
#include <vector> 
#include <cstring>
#include <queue>
#include <algorithm>
#include <functional>
constexpr int MAX_N = 1e3+5,MAX_M = 1e6+5;
struct edge{
	int x,y,w;
	//重载 <符号,方便后续的sort()排序 
	bool operator < (const edge& W) {
		return w<W.w;
	}
	//写构造函数,方便后续直接 emplace_back
	edge(int _x,int _y,int _w):x(_x),y(_y),w(_w){}
};
std::vector<edge> edges;
std::vector<std::pair<int,int>> new_edges[MAX_N];
int h[MAX_N],e[MAX_M],w[MAX_M],ne[MAX_M],idx;
bool vis[MAX_N];
int main(){
	std::cin.tie(nullptr)->sync_with_stdio(false);
	
	//图的存储方式 4:结构体数组直接存储边
	int n,m;std::cin >> n >> m;
	while(m--){
		int x,y,w;std::cin >> x >> y >> w;
		edges.emplace_back(x,y,w);
	}
	
	//如果要实现 dfs和 bfs,只需把这种存边方式转换成第2或第3种即可
	//若要转换成第二种: 
	for(auto &t:edges){
		new_edges[t.x].emplace_back(t.y,t.w);
	}
	//若要转换成第三种:
	auto init = [&]()->void{
		memset(h,-1,sizeof h);
		idx = 0;
	};
	auto add = [&](int x,int y,int z)->void{
		e[idx]=y,w[idx]=z,ne[idx]=h[x],h[x]=idx++;
	};
	init();
	for(auto &t:edges){
		add(t.x,t.y,t.w),add(t.y,t.x,t.w);
	}
	//再使用任意一种方式进行 dfs或者 bfs遍历
	//这里以第三种存图方式为例,dfs遍历 
	memset(vis,false,sizeof vis);
	vis[1] = true;
	using Dfs = std::function<void(int)>;
	Dfs dfs = [&](int u)->void{
		std::cout << u << ' ';
		for(int i = h[u];~i;i=ne[i]){
			int j = e[i];
			if(!vis[j]){
				vis[j] = true;
				dfs(j);
			}
		} 
	};
	dfs(1);
	std::cout << '\n';
	
	//bfs遍历
	auto bfs = [&]()->void{
		memset(vis,false,sizeof vis);
		std::queue<int> q;
		q.emplace(1);
		vis[1] = true;
		while(!q.empty()){
			auto t = q.front();
			q.pop();
			std::cout << t << ' ';
			for(int i = h[t];~i;i=ne[i]){
				int j = e[i];
				if(!vis[j]){
					vis[j] = true;
					q.emplace(j);
				}
			}
		}
	};
	bfs();
	std::cout << '\n';
	
	//按照边的权重值大小遍历输出
	std::sort(edges.begin(),edges.end());
	for(auto &t:edges){
		std::cout << t.x << ' ' << t.y << ' ' << t.w << '\n';
	}
	
	return 0;
}

        测试

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Beau_Will

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值