质数,埃氏筛线性筛python

质数

        质数:也被称为素数,在大于1的自然数,除了1和它本身以外不在有其他因子的自然数。即:质数x因子只有1和x, 2到x - 1中均不是因子。

def in_prime(x):
    if x <= 1:
        return False
    for i in range(2, x):
        if x % i == 0:
            return False
    return True


print(in_prime(3))

对上面的代码进行优化:

若x = pq, 记p  <= q, 则p <= x ** 0.5 <= q

先前:从[2, x - 1]中判断是否存在因子, 如果存在则不是质数。

现在:从[2, x ** 0.5]中判断是否存在因子, 如果存在则不是质数,如果不存在则是质数。

因为如果有因子, 则一定会出现在前半部分, 如果前半部分没有则后半部分也没有。

def in_prime(x):
    if x <= 1:
        return False
    m = int(x ** 0.5)
    for i in range(2, m + 1):
        if x % i == 0:
            return False
    return True


print(in_prime(97))

如何快速的筛选出2 - n 中的所有质数。

埃氏筛

算法描述:

        埃氏筛,即埃拉托斯特尼筛法,是一种由希腊数学家埃拉托斯特尼所提出的简单检定素数的算法。它的基本思想是从2开始,将每个素数的倍数都标记为合数,直到遍历完所有小于给定数的自然数。这样,剩下的未被标记的数就是素数。

具体步骤如下:

  1. 列出2以后的所有序列数。
  2. 标出序列中的第一个素数,即2,然后将序列中2的倍数全部划掉。
  3. 如果这个序列中最大数小于最后一个标出的素数的平方,那么剩下的序列中所有的数都是素数,否则继续下一步。
  4. 回到第二步,将序列中下一个素数的倍数全部划掉。
  5. 不断重复上述步骤,直到遍历完所有小于给定数的自然数。

这种方法效率较高,适用于求解大范围内的素数,其应用范围广泛,可以用于解决各种与素数相关的问题。

        基本方法:每次找到一个质数,将其倍数全部删除。        

代码实现

def get_prime(n):
    # 求出n以内的所以质数
    # vis:标记数组,标记的表示被删除的

    vis = [0] * (n + 1)
    vis[0] = vis[1] = 1
    # li:用来存放质数
    li = []
    for i in range(2, n + 1):
        if vis[i] == 0:
            li.append(i)
            for j in range(i * i, n + 1, i):
                vis[j] = 1
    return vis, li

埃氏筛法的时间复杂度是0(n*log(logn))。

欧拉筛,线性筛

        线性筛:相比如埃氏筛时间上会更加的快,线性筛的思想主要来源于对埃氏筛法的改进。在埃氏筛法中,一些含有多个质因子的数可能会被重复筛掉,例如30(=235)会被2、3、5都筛一遍,这显然是不必要的。

        线性筛法正是从这个地方着手改进,它的核心思想是在筛的过程中,每个合数都只被它的最小质因子筛去。这样就能保证每个合数都只被筛一次,复杂度为O(n)。具体来说,线性筛法使用一个长度为n的bool数组,刚开始所有元素都未被标记。然后从2开始,对于每个数i,如果i是质数或者i的最小质因子大于当前遍历的质数,则将当前质数标记为i的最小质因子;否则停止遍历,因为i的倍数已经被更小的质因子筛去了。

        线性筛法通常用于快速处理大范围内质数筛选的场景,例如求小于或等于某个数n的所有质数,并对每个数的质因数分解有快速的处理能力。此外,通过对线性筛法进行扩展,还可以计算出几乎所有的积性函数。

算法模版

def get_primes(n):
    # 筛选出1 - n只内的素数
    # vis:标记数组
    vis = [0] * (n + 1)
    vis[0] = vis[1] = 1
    # 用来存放素数
    li = []
    for i in range(2, n + 1):
        if vis[i] == 0:
            li.append(i)
        for x in li:
            if x * i > n:
                break
            vis[x * i] = 1
            if i % x == 0:
                break
    return li


n = int(input())

print(get_primes(n))

线性筛法的时间复杂度是0(n)。

  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值