题目描述
设有一棵二叉树,如图:
其中,圈中的数字表示结点中居民的人口。圈边上数字表示结点编号,现在要求在某个结点上建立一个医院,使所有居民所走的路程之和为最小,同时约定,相邻接点之间的距离为 1。如上图中,若医院建在 1 处,则距离和 =4+12+2×20+2×40=136;若医院建在 3 处,则距离和 =4×2+13+20+40=81。
输入格式
第一行一个整数 n,表示树的结点数。
接下来的 n 行每行描述了一个结点的状况,包含三个整数 w,u,v,其中 w 为居民人口数,u 为左链接(为 0 表示无链接),v 为右链接(为 0 表示无链接)。
输出格式
一个整数,表示最小距离和。
输入输出样例
输入
5
13 2 3
4 0 0
12 4 5
20 0 0
40 0 0
输出
81
说明/提示
数据规模与约定
对于 100% 的数据,保证 1≤n≤100,0≤u,v≤n,1≤w≤105。
代码
无注释版
#include<bits/stdc++.h>
using namespace std;
int a[110],d[110][110];
int main(){
int n;
cin>>n;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(i==j) d[i][j]=0;
else d[i][j]=999999;
}
}
for(int i=1;i<=n;i++){
cin>>a[i];
int l,r;
cin>>l>>r;
d[l][i]=d[i][l]=1;
d[i][r]=d[r][i]=1;
}
for(int k=1;k<=n;k++){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
}
}
}
int mins=999999;
for(int i=1;i<=n;i++){
int s=0;
for(int j=1;j<=n;j++){
s+=a[j]*d[i][j];
}
if(s<mins) mins=s;
}
cout<<mins;
}
有注释版
#include<bits/stdc++.h> // 引入所有标准库,简化代码书写
using namespace std; // 使用标准命名空间,避免使用std::前缀
int a[110], d[110][110]; // a 数组存储每个节点的居民人口数,d 数组存储节点之间的距离
int main() {
int n; // n 表示节点数
cin >> n; // 输入节点的个数
// 初始化距离矩阵 d,d[i][j] 表示节点 i 和节点 j 之间的距离
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (i == j) // 对角线上的元素 d[i][i] 为 0,因为一个节点到自己没有距离
d[i][j] = 0;
else // 非对角线上的元素 d[i][j] 初始为一个大数,表示不可达
d[i][j] = 999999;
}
}
// 输入每个节点的居民人口和它的左右子节点
for (int i = 1; i <= n; i++) {
cin >> a[i]; // 输入节点 i 的人口数
int l, r; // 左右子节点
cin >> l >> r; // 输入左右子节点的编号,若为 0 表示没有子节点
// 设置距离矩阵,父子节点之间的距离为 1
if (l > 0) { // 如果左子节点存在,设置父子节点之间的距离为 1
d[l][i] = d[i][l] = 1;
}
if (r > 0) { // 如果右子节点存在,设置父子节点之间的距离为 1
d[r][i] = d[i][r] = 1;
}
}
// 使用 Floyd-Warshall 算法计算任意两个节点之间的最短距离
for (int k = 1; k <= n; k++) { // k 为中间节点,i 和 j 为起始和终止节点
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
// 通过中间节点 k 进行松弛,更新节点 i 和 j 之间的最短距离
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
}
}
// 计算在每个节点上建医院时的总距离和,寻找最小的总距离和
int mins = 999999; // 初始化最小距离为一个大数
for (int i = 1; i <= n; i++) {
int s = 0; // 用来存储在节点 i 建医院时的总距离和
for (int j = 1; j <= n; j++) {
s += a[j] * d[i][j]; // 累加每个节点到医院的距离 * 该节点的人口
}
if (s < mins) // 更新最小距离和
mins = s;
}
// 输出最小的总距离和
cout << mins;
}