P1364 医院设置

题目描述

设有一棵二叉树,如图:

其中,圈中的数字表示结点中居民的人口。圈边上数字表示结点编号,现在要求在某个结点上建立一个医院,使所有居民所走的路程之和为最小,同时约定,相邻接点之间的距离为 1。如上图中,若医院建在 1 处,则距离和 =4+12+2×20+2×40=136;若医院建在 3 处,则距离和 =4×2+13+20+40=81。

输入格式

第一行一个整数 n,表示树的结点数。

接下来的 n 行每行描述了一个结点的状况,包含三个整数 w,u,v,其中 w 为居民人口数,u 为左链接(为 0 表示无链接),v 为右链接(为 0 表示无链接)。

输出格式

一个整数,表示最小距离和。

输入输出样例

输入 

5						
13 2 3
4 0 0
12 4 5
20 0 0
40 0 0

输出 

81

说明/提示

数据规模与约定

对于 100% 的数据,保证 1≤n≤100,0≤u,v≤n,1≤w≤105。

代码

无注释版

#include<bits/stdc++.h> 
using namespace std;
int a[110],d[110][110];
int main(){
	int n;
	cin>>n;
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
		    if(i==j) d[i][j]=0;
		    else d[i][j]=999999;
		}
	}
	for(int i=1;i<=n;i++){
		cin>>a[i];
		int l,r;
		cin>>l>>r;
		d[l][i]=d[i][l]=1;
		d[i][r]=d[r][i]=1;
	}
	for(int k=1;k<=n;k++){
		for(int i=1;i<=n;i++){
			for(int j=1;j<=n;j++){
				d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
			}
		}
	}
	int mins=999999;
	for(int i=1;i<=n;i++){
		int s=0;
		for(int j=1;j<=n;j++){
			s+=a[j]*d[i][j];
		}
		if(s<mins) mins=s;
	}
	cout<<mins;
}

有注释版

#include<bits/stdc++.h>  // 引入所有标准库,简化代码书写
using namespace std;     // 使用标准命名空间,避免使用std::前缀

int a[110], d[110][110];  // a 数组存储每个节点的居民人口数,d 数组存储节点之间的距离

int main() {
    int n;  // n 表示节点数
    cin >> n;  // 输入节点的个数

    // 初始化距离矩阵 d,d[i][j] 表示节点 i 和节点 j 之间的距离
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= n; j++) {
            if (i == j)  // 对角线上的元素 d[i][i] 为 0,因为一个节点到自己没有距离
                d[i][j] = 0;
            else  // 非对角线上的元素 d[i][j] 初始为一个大数,表示不可达
                d[i][j] = 999999;
        }
    }

    // 输入每个节点的居民人口和它的左右子节点
    for (int i = 1; i <= n; i++) {
        cin >> a[i];  // 输入节点 i 的人口数
        int l, r;  // 左右子节点
        cin >> l >> r;  // 输入左右子节点的编号,若为 0 表示没有子节点

        // 设置距离矩阵,父子节点之间的距离为 1
        if (l > 0) {  // 如果左子节点存在,设置父子节点之间的距离为 1
            d[l][i] = d[i][l] = 1;
        }
        if (r > 0) {  // 如果右子节点存在,设置父子节点之间的距离为 1
            d[r][i] = d[i][r] = 1;
        }
    }

    // 使用 Floyd-Warshall 算法计算任意两个节点之间的最短距离
    for (int k = 1; k <= n; k++) {  // k 为中间节点,i 和 j 为起始和终止节点
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++) {
                // 通过中间节点 k 进行松弛,更新节点 i 和 j 之间的最短距离
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
            }
        }
    }

    // 计算在每个节点上建医院时的总距离和,寻找最小的总距离和
    int mins = 999999;  // 初始化最小距离为一个大数
    for (int i = 1; i <= n; i++) {
        int s = 0;  // 用来存储在节点 i 建医院时的总距离和
        for (int j = 1; j <= n; j++) {
            s += a[j] * d[i][j];  // 累加每个节点到医院的距离 * 该节点的人口
        }
        if (s < mins)  // 更新最小距离和
            mins = s;
    }

    // 输出最小的总距离和
    cout << mins;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值