题目描述
现在有 n 个人,他们之间有两种关系:朋友和敌人。我们知道:
- 一个人的朋友的朋友是朋友
- 一个人的敌人的敌人是朋友
现在要对这些人进行组团。两个人在一个团体内当且仅当这两个人是朋友。请求出这些人中最多可能有的团体数。
输入格式
第一行输入一个整数 n 代表人数。
第二行输入一个整数 m 表示接下来要列出 m 个关系。
接下来 m 行,每行一个字符 opt 和两个整数 p,q,分别代表关系(朋友或敌人),有关系的两个人之中的第一个人和第二个人。其中 opt 有两种可能:
- 如果 opt 为
F
,则表明 p 和 q 是朋友。 - 如果 opt 为
E
,则表明 p 和 q 是敌人。
输出格式
一行一个整数代表最多的团体数。
输入输出样例
输入
6
4
E 1 4
F 3 5
F 4 6
E 1 2
输出
3
说明/提示
对于 100% 的数据,2≤n≤1000,1≤m≤5000,1≤p,q≤n。
代码
无注释版
#include<bits/stdc++.h>
using namespace std;
int F[1001],E[1001];
int n,m,sum;
int FindF(int x){
if(x!=F[x]){
F[x]=FindF(F[x]);
}
return F[x];
}
void UnionF(int x,int y){
x=FindF(x);
y=FindF(y);
if(x<y) F[y]=x;
else F[x]=y;
}
int main(){
cin>>n>>m;
for(int i=1;i<=n;i++){
F[i]=i;
}
char opt;
int x,y;
while(m--){
cin>>opt>>x>>y;
if(opt=='F'){
UnionF(x,y);
}
else{
if(E[x]==0) E[x]=FindF(y);
else UnionF(y,E[x]);
if(E[y]==0) E[y]=FindF(x);
else UnionF(x,E[y]);
}
}
for(int i=1;i<=n;i++){
if(FindF(i)==i) sum++;
}
cout<<sum<<"\n";
}
有注释版
#include<bits/stdc++.h> // 包含所有标准库头文件
using namespace std;
int F[1001], E[1001]; // F数组为并查集父节点数组,E[i]表示i的敌人所属的朋友集合
int n, m, sum; // n是人数,m是关系数量,sum统计团体数量
// 查找x的集合代表元素(路径压缩优化)
int FindF(int x){
if(x != F[x]){
F[x] = FindF(F[x]); // 路径压缩
}
return F[x];
}
// 合并x和y所在的两个集合(小根合并)
void UnionF(int x, int y){
x = FindF(x);
y = FindF(y);
if(x < y) F[y] = x;
else F[x] = y;
}
int main(){
cin >> n >> m; // 输入人数和关系数
// 初始化并查集:每人先是一个独立团体
for(int i = 1; i <= n; i++){
F[i] = i;
}
char opt;
int x, y;
while(m--){
cin >> opt >> x >> y;
if(opt == 'F'){
// 朋友关系,直接合并两个集合
UnionF(x, y);
} else {
// 敌人关系:间接建立“朋友关系”
// x 的敌人是 y 的朋友集合
if(E[x] == 0) {
E[x] = FindF(y); // 如果x还没有记录敌人,则记录为y的朋友集合
} else {
UnionF(y, E[x]); // 如果x已有敌人,则把y加入敌人的朋友集合中
}
// 对称地处理 y 的敌人也是 x 的朋友
if(E[y] == 0) {
E[y] = FindF(x);
} else {
UnionF(x, E[y]);
}
}
}
// 统计有多少个独立的团体 统计有多少个独立的团体(根节点的个数)
for(int i = 1; i <= n; i++){
if(FindF(i) == i) sum++; // 每个集合的代表即为一个团体
}
cout << sum << "\n"; // 输出团体数
}