自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(39)
  • 收藏
  • 关注

原创 基于 PyTorch 的 CIFAR-10 图像分类学习总结

在本次学习中,我通过 PyTorch 实现了一个基于 CNN 的 CIFAR-10 图像分类模型,完整掌握了从数据加载、模型构建到训练评估的全流程。以下是具体学习内容总结,包含关键代码实现:CIFAR-10图像分类完整代码V1创建时间:15:53。

2025-09-26 15:54:59 538

原创 图像分类项目学习总结

图像分类的本质是通过算法学习图像的视觉特征,建立 “图像 - 类别标签” 的映射关系,核心诉求是降低分类误差。任务划分:根据分类粒度选择合适的模型和数据策略(通用分类用基础模型,细粒度 / 实例级分类用深层模型 + 预训练)。指标选择:均衡场景用 Accuracy,注重可靠性用 Precision,注重覆盖度用 Recall,不均衡场景用 F1-Score 或 P-R 曲线。模型设计。

2025-09-26 10:35:12 517

原创 PyTorch 数据处理工具箱与可视化工具学习总结

Dataset是所有自定义数据集的基类,需重写__init__(初始化数据与标签)、(单样本读取与转换)、__len__(返回数据集总长度)三个方法,实现从原始数据到模型可输入格式的转换。python运行# 1. 初始化:加载数据与标签# 模拟2维向量数据集(5个样本,每个样本2个特征)# 对应标签(共3类:0、1、2)# 2. 单样本读取:根据索引返回样本与标签(必须重写)# numpy数组转换为Tensor(模型仅支持Tensor输入)

2025-09-24 14:18:28 266

原创 PyTorch 神经网络工具箱学习总结

优先使用nn.Module:构建包含可学习参数的层(如nn.Linearnn.Conv2d)、需要状态管理的模块(如nn.Dropout),或需通过容器组织的复杂模型。辅助使用:调用无参数的功能性操作(如F.relu),尤其在forward方法中进行简单张量变换时更便捷。对于复杂网络(如 ResNet),需自定义基础模块(如残差块),再组合成完整模型。以下以 ResNet 的核心组件 —— 残差块为例,说明自定义模块的实现方法。根据任务类型选择损失函数,结合优化器实现参数更新:python运行。

2025-09-23 14:52:02 660

原创 PyTorch 神经网络工具箱学习总结

本次学习围绕 PyTorch 神经网络工具箱展开,系统掌握了神经网络的核心构成、模型构建工具、多种建模方法、自定义网络模块以及模型训练流程等关键内容,形成了对 PyTorch 应用的完整认知框架。以下是具体总结:神经网络的正常运行依赖四大核心组件,各组件分工明确、协同工作,共同支撑模型的学习与预测过程:这四大组件形成了 "数据输入→层变换→模型预测→损失计算→参数优化" 的完整闭环,其关系可概括为:层构成模型,模型生成预测值,损失函数衡量预测偏差,优化器依据偏差优化模型参数。PyTorch 提供了和两大核心

2025-09-22 15:41:17 1160 2

原创 卷积神经网络(CNN)学习总结

CNN 通过局部感知、参数共享、分层特征提取LeNet-5 奠定基础框架,验证 CNN 可行性;AlexNet 引入关键技术,引爆深度学习革命;VGG 网络深化模块化设计,探索深度的价值。

2025-09-19 15:58:05 854

原创 多层感知机学习总结

感知机由美国学者 Frank Rosenblatt 于 1957 年提出,是神经网络的基础结构单元。其核心原理是基于输入信号、权重和偏差计算输出,本质是一种线性二分类模型。多层感知机是在单层感知机基础上引入隐藏层的神经网络结构,通过多层非线性变换实现对复杂数据的建模,是最简单的深度神经网络。多层感知机的核心价值:通过引入隐藏层和激活函数,突破单层感知机的线性局限,实现非线性建模;关键组件。

2025-09-18 15:49:42 808

原创 深度学习之线性回归与 Softmax 回归

模型定位:线性回归用于连续值预测,Softmax 回归用于多类分类,后者可视为针对分类任务优化的单层全连接神经网络。优化核心:梯度法是参数优化的基础,通过沿损失函数的负梯度方向更新参数实现误差最小化;小批量随机梯度下降是深度学习的默认优化算法。关键超参数:批量大小和学习率直接影响模型训练效率与收敛效果,需根据任务场景合理调优。损失函数选择:回归任务可选用平方损失、L1 损失等;分类任务优先使用交叉熵损失,配合 Softmax 运算实现概率输出与误差量化。

2025-09-17 16:17:24 1097

原创 深度学习预备知识学习总结

机械化时代(18 世纪末):以瓦特发明蒸汽机为标志,开启工业设备发展的序幕。电气化时代(19 世纪末):以爱迪生发明电灯为代表,推动电力在生产生活中的广泛应用。信息化时代(20 世纪 50 年代中期):依托电子信息技术与自动化技术,实现信息的高效处理与传输。人工智能时代(21 世纪至今):以智能系统为核心,推动机器模拟、延伸和扩展人类智能的技术发展。人工智能:通过人工方法在计算机上实现的智能,即让机器具备类人智能的技术。人工智能学科。

2025-09-16 18:28:58 496

原创 支持向量机(SVM)学习总结

SVM 的核心任务是在样本空间中找到一个划分超平面,将不同类别的样本完全分离。从数学角度看,超平面是 n 维空间到 n-1 维空间的映射子空间,由 n 维向量w(法向量,决定超平面方向)和实数b(截距,决定超平面位置)定义,其方程为:wTx+b=0二维空间中,超平面是直线(如Ax+By+C=0);三维空间中,超平面是平面;更高维空间中,超平面虽无法直观可视化,但数学定义一致。SVM 核心逻辑。

2025-08-27 15:19:04 662

原创 朴素贝叶斯三大概率模型学习总结

模型选型逻辑:根据特征类型选择朴素贝叶斯模型是关键 —— 离散计数用多项式、连续值用高斯、二值特征用伯努利,避免 “错配” 导致的性能损失。高斯模型特点:无需手动处理连续特征的分布,实现简单、速度快,但对 “特征独立” 假设敏感(如手写数字中相邻像素存在相关性,会影响模型精度)。评估维度:除准确率外,需通过混淆矩阵、分类报告分析 “类别级” 性能,定位易混淆类别,为优化提供方向。

2025-08-25 18:17:48 682

原创 机器学习之线性回归学习总结

【代码】机器学习之线性回归学习总结。

2025-08-22 11:31:36 535

原创 机器学习之集成算法学习

集成学习(ensemble learning)通过构建并结合多个个体学习器来完成学习任务,核心思想是 “集众家之长”—— 就像多个专家共同判断往往比单个专家更可靠。其关键在于如何生成多样化的个体学习器并设计有效的结合策略。随机森林适合处理高维数据,训练高效且结果稳定,是工业界常用的 “万能模型”;AdaBoost 专注于修正错误样本,适合处理非线性问题,但对噪声较敏感;Stacking 灵活性高,可融合多种模型的优势,但实现较复杂。

2025-08-21 15:44:55 1235

原创 机器学习之K 均值聚类算法

通过本次学习,我掌握了 K 均值算法的基本原理、实现步骤和代码应用,同时理解了其在处理不同数据集时的优势与局限性,为后续更复杂的聚类任务打下了基础。聚类是机器学习中的无监督学习问题,核心是将相似的数据样本分到同一组,难点在于聚类结果的评估和参数调优。

2025-08-21 15:30:19 399

原创 机器学习之数据预处理学习总结

数据预处理的核心目标是提升数据质量,使数据更适合模型输入。数值型数据常需标准化或归一化;分类特征需根据是否有序选择编码方式;缺失值和离群值需针对性处理,避免影响模型学习。掌握的模块和pandas的相关工具,能高效完成预处理流程,为后续模型训练奠定坚实基础。

2025-08-21 09:41:00 948

原创 决策树学习总结

通过本次学习,对决策树的主要算法、特殊情况处理、剪枝策略、代码实现参数及实践应用有了较为全面的认识,为后续进一步深入学习和应用决策树奠定了基础。今天的课堂练习,使用决策树对泰坦尼克号幸存者进行预测。

2025-08-19 15:11:46 582

原创 决策树学习总结

决策树是一种直观且实用的机器学习模型,其核心在于通过熵和信息增益来选择特征和进行切分,从而构建出能有效进行分类或回归的树模型。通过实际案例的练习,可以更好地理解和掌握决策树的构造过程。

2025-08-18 15:54:34 530

原创 机器学习之 KNN 算法学习总结

知识掌握:深入理解了 KNN 算法的原理和实现流程,掌握了欧式距离、曼哈顿距离等距离度量方法,学会了使用交叉验证选择最优 K 值,能够运用 sklearn 库实现基于 KNN 的分类任务。实践能力:通过电影分类和鸢尾花分类案例,提升了将理论知识应用于实际问题的能力,熟悉了数据集加载、划分、模型训练、评估和预测的完整流程。算法特点认知:认识到 KNN 算法是一种 “惰性学习” 算法,不需要预先训练模型,而是在预测时进行计算,其性能受 K 值和距离度量方式影响较大,在实际应用中需合理选择参数。

2025-08-15 14:30:09 1265

原创 机器学习内容总结

机器学习是通过处理特定任务,以大量经验数据为基础,依据一定的评判标准,分析数据并不断优化任务完成效果的过程。其核心逻辑是从经验中归纳规律,再运用规律对新问题进行预测,具体表现为利用历史数据训练模型,使模型能对未知的新数据做出预测。

2025-08-14 15:09:04 1242

原创 数据分析可视化学习总结(美妆2)

在本次数据分析学习中,我围绕商品销售数据展开了一系列分析与可视化操作,通过 Python 的 matplotlib、seaborn 等库实现了数据的筛选、分组统计及图表绘制,深入理解了数据可视化在业务分析中的应用价值。

2025-08-13 17:59:21 962

原创 数据分析学习总结之实例练习(双十一淘宝美妆)

本次通过对双十一淘宝美妆数据的分析实践,我系统掌握了数据处理与分析的完整流程,从数据初步认知到深度挖掘,再到可视化呈现与结论提炼,收获颇丰。

2025-08-12 17:06:48 1152

原创 爬虫与数据分析结合案例学习总结

今天的学习通过爬虫技术获取了中国大学排名数据,展示了从网页请求、数据解析到存储的完整爬虫流程;随后利用 pandas 进行数据预处理,解决了数据缺失问题;最后通过 matplotlib 绘制柱形图和饼图,直观呈现了不同星级学校的数量及占比分布。整个过程体现了爬虫技术在数据获取中的作用,以及数据分析与可视化在数据解读中的价值,为后续基于该数据的深入研究奠定了基础。

2025-08-11 19:19:04 1363

原创 Seaborn 学习总结

今天我学习的Seaborn 是一个建立在 Matplotlib 基础之上的 Python 数据可视化库,它专注于绘制各种统计图形,能让用户更轻松地呈现和理解数据。其设计目标是简化统计数据可视化过程,提供了高级接口和美观的默认主题,使用户通过少量代码就能实现复杂图形的绘制。

2025-08-08 15:47:45 763

原创 Matplotlib 学习总结

今天我学习了Matplotlib ,它是 Python 的绘图库,能轻松将数据图形化,提供多样化输出格式,可绘制静态、动态、交互式图表,如散点图、柱状图等。python运行plt.show()python运行plt.show()

2025-08-07 16:34:33 1284

原创 NumPy 常用函数学习总结(二)

NumPy 提供了一系列用于字符串操作的函数,可对数组中的字符串元素进行处理。,用于计算数组中角度的正弦、余弦、正切值(需先将角度转为弧度)。NumPy 包含多种数学函数,可对数组进行各类数学运算。:向下取整,返回小于或者等于指定表达式的最大整数。:向上取整,返回大于或者等于指定表达式的最小整数。返回输入数组的排序副本,可指定排序轴、排序算法等。用于对数组进行基本的算术运算。返回数组值从小到大的索引值。:返回指定数字的四舍五入值。用于对数组进行统计分析。用于对数组进行排序操作。

2025-08-06 19:22:40 368

原创 Pandas 学习总结

高性能的数据处理能力提供容易使用的数据结构包含丰富的数据分析工具。

2025-08-06 18:22:54 643

原创 NumPy 常用函数学习总结(一)

NumPy 提供了丰富的字符串处理函数,可对字符串或字符串数组进行各种操作。NumPy 提供了丰富的数学运算函数,支持对数组进行批量计算。支持数组间的基本算术运算及特殊运算。:连接两个数组的逐个字符串元素。:返回按元素多重连接后的字符串。用于对数组元素进行统计分析。(需将角度转换为弧度)

2025-08-04 16:33:28 404

原创 NumPy 数组操作学习总结

使用 broadcast_to 函数将数组 a 广播到形状 (4, 4)bb = np.tile(b, (4, 1)) # 重复 b 的各个维度。# 创建一个形状为 (1, 1, 3, 4) 的四维数组。# 创建一个形状为 (2, 3, 4) 的三维数组。# 创建一个形状为 (2, 3, 4) 的三维数组。# 创建一个形状为 (1, 3, 3) 的三维数组。print('调用 ravel 函数之后:')# 创建一个形状为 (1, 4) 的二维数组。# 创建一个形状为 (2, 2) 的二维数组。

2025-08-01 18:28:11 656

原创 NumPy 学习总结

NumPy 是一个开源的 Python 科学计算库,能直接对数组和矩阵进行操作,可省略很多循环语句,其众多数学函数也让编写代码的工作轻松不少。

2025-07-31 17:45:50 1041

原创 BeautifulSoup 数据解析学习总结

BeautifulSoup 是一个用于处理导航、搜索、修改分析树等功能的工具箱,它提供简单、Python 式的函数,能方便地从文档中解析出需要抓取的数据。其具有自动处理编码的特性,会将输入文档转换为 Unicode 编码,输出文档转换为 utf-8 编码,无需开发者额外考虑编码问题。同时,它还为用户灵活地提供不同的解析策略或强劲的速度。若输出 “Hello”,则说明安装成功。解析器使用方法优点劣势Python 标准库Python 的内置标准库、执行速度适中、文档容错能力强。

2025-07-31 11:58:04 648

原创 MySQL 数据库基础学习总结

CREATE:用于创建数据库对象。CREATE DATABASE (IF NOT EXISTS) 库名;,例如。CREATE TABLE (IF NOT EXISTS) 表名(属性名 数据类型 约束);,例如。ALTER:修改数据库对象结构。ALTER TABLE 表名 ADD COLUMN 列名 数据类型;,如。ALTER TABLE 表名 MODIFY COLUMN 列名 数据类型;,如。ALTER TABLE 表名 CHANGE COLUMN 旧列名 新列名 数据类型;,如。

2025-07-28 17:07:09 821

原创 MySQL 数据库基础学习总结

SQL 是用于组织和访问数据库数据的标准语言,1974 年由 Boyce 和 Chamberlin 提出,具有功能丰富、简洁、灵活的特点。数据定义语言(DDL):用于定义和修改数据库结构,命令有 CREATE、ALTER、DROP、TRUNCATE 等。数据操纵语言(DML):对数据库数据进行操作,命令包括 INSERT、UPDATE、DELETE、CALL 等。数据查询语言(DQL):用于检索数据,主要是 SELECT、WHERE 语句。数据控制语言(DCL)

2025-07-24 18:22:19 890

原创 Requests 库与 XPath 学习总结

在今天的习中,我学习了在爬虫应用开发中,Requests 库的高级用法和 XPath 解析是非常重要的技能。Requests 库能帮助我们与网页进行交互,而 XPath 则能精准提取所需信息,两者结合能高效完成数据爬取任务。

2025-07-24 09:25:59 855

原创 爬虫应用开发之静态网页爬取模块数据存储

网络爬虫在爬取数据时可能引发性能骚扰(增加服务器资源开销)、法律风险(数据产权问题)和隐私泄露(突破访问控制)等问题,因此需遵循 Robots 协议规范行为。爬取数据后需存储,主要学习了 TXT、CSV 文件存储及相关库的使用。

2025-07-22 16:56:58 792

原创 HTML 开发基础学习内容总结

【代码】HTML 开发基础学习内容总结。

2025-07-21 17:08:56 626

原创 HTML学习和VSCoed下载

输入元素:包括文本域(text)、密码域(password)、单选按钮(radio)、复选框(checkbox)等,通过 <input> 标记实现,不同 type 对应不同功能;下载完成后,会得到一个.exe后缀的安装程序文件。- 基本结构:由 <html> (文件开始)、 <head> (头部,含标题等)、 <title> (标题内容)、 <body> (主体内容)构成。- 图片: <img> ,属性包括路径(src)、提示文字(title)、替代文本(alt)、宽高(width/height)等。

2025-07-18 16:55:59 468

原创 Requests库实现模拟登录

定义登录逻辑,向豆瓣移动端登录接口( url )发送POST请求,提交用户名( name )、密码( password )等参数( parm )。- 定义 headers (请求头),包含浏览器标识( User-Agent )和Cookie信息,模拟真实浏览器的请求环境,避免被网站识别为爬虫。- 使用 requests.session() 创建会话( s ),自动保存登录状态(如Cookie),后续请求可复用该会话,保持登录状态。- 程序运行的起点,先调用 login() 函数执行登录,获取会话对象。

2025-07-18 16:26:02 391

原创 Requests库学习小结

练了表情包爬取和手机号查询案例,思路都是先找URL,再发请求,最后处理返回内容。感觉自己已经能上手简单的爬虫任务了,下次试试爬点更有意思的东西~status_code 看状态(200是成功), text 拿内容, encoding 和 apparent_encoding 解决乱码问题。2.请求方法:GET(查数据)和POST(提交数据)最常用,用哪种得看网站要求,F12开发者工具能帮我们确认。今天学了Requests库,感觉打开了爬虫新世界的大门!1.通用代码框架必须掌握,加了异常处理才不容易翻车。

2025-07-17 17:53:37 227

原创 学习网络爬虫

这个代码中, requests.get 用于发起请求, raise_for_status 检查请求状态,apparent_encoding 处理编码, try - except 进行异常处理 ,从而实现了一个简单的静态网页爬取功能。1.HTTP基本原理:包含URI和URL(URL是资源地址)、超文本、HTTP和HTTPS(HTTPS更安全)、请求过程、请求方式(如GET、POST )、响应(含状态码等)。3.增量式网络爬虫:对已下载网页增量更新,含爬行、排序等模块,使用统一更新法等策略更新页面。

2025-07-17 12:07:51 288

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除