Seaborn 学习总结

一、Seaborn 简介

今天我学习的Seaborn 是一个建立在 Matplotlib 基础之上的 Python 数据可视化库,它专注于绘制各种统计图形,能让用户更轻松地呈现和理解数据。其设计目标是简化统计数据可视化过程,提供了高级接口和美观的默认主题,使用户通过少量代码就能实现复杂图形的绘制。

二、Seaborn 的安装与导入

(一)安装方法

  1. 使用 pip 安装:pip install seaborn
  2. 使用 conda 安装:conda install seaborn(可使用清华源:Simple Index ,能提高安装速度)

(二)导入方法

python

运行

import seaborn as sns
sns.set_theme()  # 可选择不同的主题和模板

(三)主题设置

sns.set_theme() 可以选择不同的主题和模板,格式为sns.set_theme(style="whitegrid", context="paper")

  1. style 参数取值
    style 取值说明
    darkgrid(默认)深色网格主题
    whitegrid浅色网格主题
    dark深色主题,没有网格
    white浅色主题,没有网格
    ticks深色主题,带有刻度标记
  2. context 参数取值
    context 取值说明
    paper适用于小图,具有较小的标签和线条
    notebook(默认)适用于笔记本电脑和类似环境,具有中等大小的标签和线条
    talk适用于演讲幻灯片,具有大尺寸的标签和线条
    poster适用于海报,具有非常大的标签和线条

三、常用绘图函数及示例

(一)散点图(sns.scatterplot ())

用于绘制两个变量之间的散点图,可选择添加趋势线。

(二)折线图(sns.lineplot ())

用于绘制变量随着另一个变量变化的趋势线图。
示例代码:

python

运行

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
# 创建一个示例数据框
data = {'X': [1, 2, 3, 4, 5], 'Y': [5, 4, 3, 2, 1]}
df = pd.DataFrame(data)
# 绘制折线图
sns.lineplot(x='X', y='Y', data=df)
plt.show()

(三)柱形图(sns.barplot ())

用于绘制变量的均值或其他聚合函数的柱状图。
示例代码:

python

运行

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
# 创建一个示例数据框
data = {'Category': ['A', 'B', 'C'], 'Value': [3, 7, 5]}
df = pd.DataFrame(data)
# 绘制柱状图
sns.barplot(x='Category', y='Value', data=df)
plt.show()

(四)箱线图(sns.boxplot ())

用于绘制变量的分布情况,包括中位数、四分位数等。
示例代码:

python

运行

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
# 创建一个示例数据框
data = {'Category': ['A', 'A', 'B', 'B', 'C', 'C'], 'Value': [3, 7, 5, 9, 2, 6]}
df = pd.DataFrame(data)
# 绘制箱线图
sns.boxplot(x='Category', y='Value', data=df)
plt.show()

(五)热图(sns.heatmap ())

用于绘制矩阵数据的热图,通常用于展示相关性矩阵。
示例代码:

python

运行

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
# 创建一个示例数据框
data = {'A': [1, 2, 3, 4, 5], 'B': [5, 4, 3, 2, 1]}
df = pd.DataFrame(data)
# 创建一个相关性矩阵
correlation_matrix = df.corr()
# 使用热图可视化相关性矩阵
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.show()

(六)小提琴图(sns.violinplot ())

用于显示分布的形状和密度估计,结合了箱线图和核密度估计。
示例代码:

python

运行

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
# 创建一个示例数据框
data = {'Category': ['A', 'A', 'B', 'B', 'C', 'C'], 'Value': [3, 7, 5, 9, 2, 6]}
df = pd.DataFrame(data)
# 绘制小提琴图
sns.violinplot(x='Category', y='Value', data=df)
plt.show()

通过对 Seaborn 的学习,我们可以利用这些强大的绘图功能,更直观、清晰地展示数据特征和规律,为数据的分析和解读提供有力支持。在实际应用中,可根据具体的数据类型和分析需求,选择合适的图形进行绘制。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值