【抽代复习笔记】28-群(二十二):四道子群例题

例1:证明,循环群的子群是循环群。

证:设G = (a),H ≤ G。

(1)若H = {e},则H是一阶循环群;

(2)设H至少包含2个元素,即设H = {...,a^(-k),a^(-j),a^(-i),a^0,a^i,a^j,a^k,...},

其中a^i是H中正指数最小的元素,0<i<j<k,

下证a^i是H的生成元:

对任意的a^t∈H(t∈Z),存在q∈Z,使得t = qi + r,0 ≤ r<i,

a^t = a^(qi + r) = a^(qi) o a^r,从而a^r = a^t o [a^(iq)]^(-1) = a^t o (a^i)^(-q),

因为a^t,a^i∈H,所以a^r = a^t o (a^i)^(-q)∈H,

又0 ≤ r<i,考虑到i是H中的最小正指数,所以r = 0,

即a^t = (a^i)^q,因此a^i是H中的生成元,即H = (a^i)是循环子群。

 

例2:找出模12的剩余类加群Z12的所有子群。

解:如果a与12互素,那么[a]也是Z12的生成元,如果[a]是生成元,那么[12-a]也是,

因此,

([0]) = {[0]} ≤ Z12,

([1]) = ([5]) = ([7]) = ([11]) ≤ Z12,

([2]) = ([10]) = {[0],[2],[4],[6],[8],[10]} ≤ Z12,

([3]) = ([9]) = {[0],[3],[6],[9]} ≤ Z12,

([4]) = ([8]) = {[0],[4],[8]} ≤ Z12,

([6]) = {[0],[6]} ≤ Z12。

 

例3:找出S3的所有子群。

解:{(1)},{(1),(12)},{(1),(13)},{(1),(23)},{(1),(123),(132)},S3,用子群的第一判定定理可证明,

例如:对{(1),(123),(132)},首先{(1),(123),(132)}是S3的非空子集;

其次,(1)(123) = (123)∈{(1),(123),(132)},(1)(132) = (132)∈{(1),(123),(132)},(123)(132) = (1)∈{(1),(123),(132)},即对任意的a,b∈{(1),(123),(132)},均有a o b∈{(1),(123),(132)},这满足了子群第一判定定理的第一条;

再者,(1)的逆元是(1)本身,而(123)和(132)互为逆元,均属于{(1),(123),(132)},这边满足了子群第一判定定理的第二条。

所以{(1),(123),(132)} ≤ S3。

其它可类似证明。

 

例4:证明,子群的交仍是子群。

证:设(G,o)是一个群,H ≤ G,K ≤ G,则e∈H且e∈K,

因此e∈H∩K,所以H∩K ≠ ∅,

对任意的a,b∈H∩K,因为H ≤ G,K ≤ G,

所以a o b^(-1)∈H,a o b^(-1)∈K,所以a o b^(-1)∈H∩K,

从而由子群的第二判定定理,可得出H∩K ≤ G。

 

(待续……)

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值