【抽代复习笔记】07-群(一)

群的第一定义:

设G≠∅为一个集合,o是定义在G上的一个映射,若满足下面几个条件:

公理(1):对任意的a,b∈G,都有a o b∈G;

公理(2):对任意的a,b,c∈G,都有(a o b) o c = a o (b o c);

公理(3):对任意的a,b∈G,方程a o x = b和y o a = b在G中都分别存在x和y的解.

则称G关于 o 作成一个群,记为(G,o),o也称为G上的乘法。

 

群论是《近世代数》里面在其它领域应用最广泛的理论。

 

例:证明(Z - {0},× )不是群,(Q - {0},×)是群。(Z - {0}和Q - {0}分别表示整数集去掉0和有理数集去掉0后的集合,×表示数的乘法运算)

证:(1)任取a,b∈Z - {0},a×x = b⇉x = b/a未必是整数,因此方程a×x = b在Z - {0}中不一定有解,同理y×a = b在Z - {0}中也不一定有解,因此不满足群定义中的第三条,因此(Z - {0},× )不是群;

(2)①任取a,b∈Q - {0},因为有理数对乘法运算是封闭的,并且任意两个非零有理数相乘之后的积仍旧是非零有理数,也就是说a×b∈Q - {0},因此满足群定义的第一条公理;

②数的乘法运算是适合结合律的,因此也满足群定义的第二条公理;

③任取a,b∈Q - {0},令a×x = b⇉x = b/a,由于有理数对除法也是封闭的,任意两个非零有理数相除之后的商仍旧是非零有理数,因此b/a∈Q - {0},也就是说a×x = b在Q - {0}上一定有解,同理可证y×a = b在Q - {0}上也一定有解,因此也满足群定义的第三条公理。

综上所述,(Q - {0},×)满足群定义的所有条件,因此它是一个群。

 

定理1:假设(G,o)是一个群,并且存在e∈G,使得对任意的a∈G,都有e o a = a,那么称e为群(G,o)的左单位元

定理2:假设(G,o)是一个群,并且对于任意的a∈G,存在a1∈G,使得:a1 o a = e,那么称a1为群(G,o)中元素a的左逆元

 

群的第二定义:

设G≠∅为一个集合,o是定义在G上的一个映射,若满足下面几个条件:

公理(1):对任意的a,b∈G,都有a o b∈G;

公理(2):对任意的a,b,c∈G,都有(a o b) o c = a o (b o c);

公理(4):存在e∈G,对任意的a∈G,都有:e o a = a;

公理(5):对任意的a∈G,存在a1∈G,使得:a1 o a = e。

则称G关于 o 作成一个群,记为(G,o),o也称为G上的乘法。

 

定理3:a的左逆元a1必定也是a的右逆元。

证:对于群(G,o),对于任意的a∈G,假设a1是其左逆元,假设a1的左逆元是a2,e是群(G,o)的左单位元,

那么有a1 o a = e,a2 o a1 = e,

从而:a o a1 = e o (a o a1) = (a2 o a1) o (a o a1) =(满足结合律)= a2 o (a1 o a) o a1 = a2 o (e o a1) = a2 o a1 = e,

即有a o a1 = e,

因此a1也是a的右逆元。

 

定理4:群(G,o)的左单位元e也是其右单位元。

证:对于群(G,o),e为其左单位元,那么对于任意的a∈G,a1是其左逆元(根据定理3,也是其右逆元),那么我们有:e o a = a,a1 o a = a o a1 = e,

从而:a o e = a o (a1 o a) =(适合结合律)= (a o a1) o a = e o a = a,

即有:a o e = a,

因此e也是群(G,o)的右单位元。

 

定理5:群的第一定义与第二定义等价。

证:要证两个定义等价,只需证由第一定义可以推导出第二定义、且由第二定义可以推导出第一定义即可。

①假定群(G,o)满足第一定义,根据公理(3),对于任意a,b∈G,a o x = b和y o a = b在G中都有解,由于a,b的任意性,因此对于a=b这种特殊情况,亦即y o a = a这个方程,在G中同样有解,而这个解正是左单位元e,这就推导出了公理(4);同理,当b = e时,也就是方程y o a = e也有解,而这个解正是a的左逆元a1,于是这就推导出了公理(5)。因此由第一定义可以推导出第二定义。

②假定群(G,o)满足第二定义,根据公理(4)和公理(5),群(G,o)存在左单位元e、以及任意G中任意元素a均存在左逆元a1,那么对于方程a o x = b,方程两边同时左乘a的左逆元,可得:a1 o (a o x) = (a1 o a) o x = e o x = x = a1 o b,因为a1,b∈G,根据公理(1)的封闭性,可得x = a1 o b∈G,这就证明了对任意的a,b∈G,方程a o x = b在G中都有解;同理可证对任意的a,b∈G,方程y o a = b在G中都有解,因此我们推导出了公理(3)。因此由第二定义也可以推导出第一定义。

综上所述,群的第一定义与群的第二定义是等价的。

 

(待续......)

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值