1. 引言
在数据分析和机器学习的过程中,数据质量是至关重要的,尤其是爬虫抓取的数据往往不完美,可能存在冗余、缺失、异常或格式不统一等问题。因此,数据清洗和预处理成为了数据科学中的一项重要任务。在本文中,我们将探讨如何使用Python爬虫抓取数据,并利用 pandas 对数据进行清洗与预处理,确保数据质量达到可以分析和建模的标准。
2. 爬虫基本概念
Python爬虫是指通过编程手段模拟浏览器行为,从网站上获取数据的一种方式。爬虫的常见步骤包括:
- 发送请求:爬虫向目标网站发送HTTP请求,获取HTML内容。
- 解析网页:对获取的HTML内容进行解析,提取其中的有用数据。
- 存储数据:将提取的数据保存到本地文件或数据库中。
爬虫的核心是如何提取有用数据,而抓取到的数据往往是未清洗的,需要对其进行进一步的清理和格式化处理。
3. Python爬虫技术栈
我们将使用以下技术栈进行爬虫开发:
- requests:用于发送HTTP请求,获取网页内容。
- BeautifulSoup:用于解析HTML网页,提取所需数据。
- pandas:用于数据清洗、预处理、分析和存储。
- <
订阅专栏 解锁全文
441

被折叠的 条评论
为什么被折叠?



