订阅专栏后,可获取一份项目源码(数据集+源码,私信留下邮箱)
引言
随着人工智能和计算机视觉技术的不断发展,农业领域正朝着智能化、自动化方向快速发展。在农业生产过程中,作物的生长周期对于最终产量和质量有着重要的影响。特别是在蔬菜种植中,生菜作为一种高产且易生长的作物,其从播种到收获的每一个生长阶段都需要精确监控,以确保作物能够在最佳时间得到收割。
本项目基于YOLOv10深度学习算法设计并实现了一个生菜生长周期检测系统。该系统通过自动化图像识别,能够检测出生菜在不同生长阶段的状态,并提供实时监控功能。通过图形化用户界面(UI),用户可以方便地查看检测结果,并获取生菜的具体生长阶段,包括五个主要生长周期:成熟可收割期、空壳期、发芽阶段、结荚期、幼苗阶段。
本文将详细介绍该生菜生长周期检测系统的设计与实现,包括数据集准备、YOLOv10模型训练、UI界面设计、实时检测功能的实现等,最终为农业领域提供一个便捷的作物生长监控解决方案。
目录