前缀和4️⃣-除自身以外数组的乘积

题目链接:238. 除自身以外数组的乘积

题目描述:

给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。

题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。

不要使用除法,且在 O(n) 时间复杂度内完成此题。

示例 1:

输入: nums = [1,2,3,4]
输出: [24,12,8,6]

示例 2:

输入: nums = [-1,1,0,-3,3]
输出: [0,0,9,0,0]

提示:

  • 2 <= nums.length <= 105

  • -30 <= nums[i] <= 30

  • 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内

进阶:你可以在 O(1) 的额外空间复杂度内完成这个题目吗?( 出于对空间复杂度分析的目的,输出数组 不被视为 额外空间。)

解法(前缀和数组):

算法思路:

注意题目的要求,不能使用除法,并且要在 0(N) 的时间复杂度内完成该题。那么我们就不能使 用暴力的解法,以及求出整个数组的乘积,然后除以单个元素的方法。

继续分析,根据题意,对于每一个位置的最终结果 ret[i],它是由两部分组成的:

nums[0] * nums[1] * nums[2] * ... * nums[i-1]

nuts[i + 1] * nums[i+2] * ... *nums[n-1]

于是,我们可以利用前缀和的思想,使用两个数组before和after,分别处理出来两个信息:

before 存[0,i-1] 的积 , after存[i+1,n-1]的积

ret[i] = before[i] * after[i] ,ret即为结果

本题与**724. 寻找数组的中心下标类似,就不多介绍啦,也是建立函数关系第i个位置前面的积 = 第i-1个位置前面的积 * 第i-1个位置的数据。after数组从后向前遍历,细节问题就是vector要初始化为1,不然初始化为0,这里是乘,将一直会是0

class Solution {
public:
    vector<int> productExceptSelf(vector<int>& nums) {
        int n = nums.size();
        //预处理前缀积和后缀积
        vector<int> before(n,1);
        vector<int> after(n,1);

        for(int i = 1; i < n; i++){
            before[i] = before[i-1] * nums[i-1];
        }

        for(int i = n-2; i >= 0; i--){
            after[i] = after[i+1] * nums[i+1];
        }

        //使用前缀积和后缀积
        vector<int> ret(n);
        for(int i = 0; i < n; i++){
            ret[i] = before[i] * after[i];
        }

        return ret;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值