算法分析学习笔记3:动态规划(1)

问题1:给定两个字符串str1和str2,输出两个字符串的最长公共子串,保证str1和str2的最长公共子串存在且唯一。

要求:

(1)数据输入:字符串长度0<|str1|,|str2|5000,元素从{0-9,A-Z}随机生成。

(2)数据输出:最长公共子串。

(3)根据代码,分析时间复杂度、空间复杂度,以及实际执行时间、实际占用空间;

代码1:

#include <iostream>
#include <string>
#include <vector>
#include <chrono>
std::string longestCommonSubstring(const std::string& str1, const std::string& str2) {
    int len1 = str1.length();
    int len2 = str2.length();
    
    // dp[i][j] 表示 str1[0:i-1] 和 str2[0:j-1] 的最长公共后缀的长度
    std::vector<std::vector<int>> dp(len1 + 1, std::vector<int>(len2 + 1, 0));
    
    int maxLength = 0; // 最长公共子串的长度
    int endIndex = -1; // 最长公共子串在 str1 中的结束位置
    
    for (int i = 1; i <= len1; ++i) {
        for (int j = 1; j <= len2; ++j) {
            if (str1[i - 1] == str2[j - 1]) {
                dp[i][j] = dp[i - 1][j - 1] + 1;
                if (dp[i][j] > maxLength) {
                    maxLength = dp[i][j];
                    endIndex = i - 1;
                }
            } else {
                dp[i][j] = 0;
            }
        }
    }
    
    // 从 str1 中提取最长公共子串
    return str1.substr(endIndex - maxLength + 1, maxLength);
}

int main() {
    std::string str1, str2;
    std::cin >> str1 >> str2;
    system("chcp 65001");
    auto start = std::chrono::high_resolution_clock::now();
    std::string result = longestCommonSubstring(str1, str2);
    auto end = std::chrono::high_resolution_clock::now();
    std::chrono::duration<double, std::milli> duration = end - start;
    std::cout << result << std::endl;
    std::cout << "排序所需时间: " << duration.count() << " 毫秒" << std::endl;
    system("pause");
    return 0;
}

结果1:

输入:

输出:

分析1:

最长公共子串的时间复杂度为:O(n*m);

空间复杂度为:O(n*m)。

问题2:给定n个整数组成的序列,现在要求将序列分割为m段,每段子序列中的数在原序列中连续排列。如何分割才能使这m段子序列的和的最大值达到最小?

代码2:

include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
#include <chrono>
using namespace std;

bool canSplit(const vector<int>& nums, int m, int maxSum) {
    int currentSum = 0;
    int segments = 1;
    
    for (int num : nums) {
        if (currentSum + num <= maxSum) {
            currentSum += num;
        } else {
            segments++;
            currentSum = num;
            if (segments > m) {
                return false;
            }
        }
    }
    return true;
}
int splitArray(vector<int>& nums, int m) {
    int n = nums.size();
    int maxElement = *max_element(nums.begin(), nums.end());
    int totalSum = accumulate(nums.begin(), nums.end(), 0);
    
    int left = maxElement;
    int right = totalSum;
    int result = right;
    
    while (left <= right) {
        int mid = left + (right - left) / 2;
        if (canSplit(nums, m, mid)) {
            result = mid;
            right = mid - 1;
        } else {
            left = mid + 1;
        }
    }
    
    return result;
}
int main() {
    system("chcp 65001");
    int n, m;
    cin >> n >> m;
    vector<int> nums(n);
    for (int i = 0; i < n; ++i) {
        cin >> nums[i];
    }
    auto start = std::chrono::high_resolution_clock::now();
    int result = splitArray(nums, m);
    auto end = std::chrono::high_resolution_clock::now();
    std::chrono::duration<double, std::milli> duration = end - start;
    cout << result << endl;
    std::cout << "排序所需时间: " << duration.count() << " 毫秒" << std::endl;
    system("pause");
    return 0;
}

结果2:

分析2:

最小公共子串和的时间复杂度为:O(nlogS),S为序列总和;

空间复杂度为:O(1)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值