- 博客(7)
- 收藏
- 关注
原创 决策树基础知识
决策树是机器学习中的基础算法之一,广泛应用于分类和回归问题。决策树是一种模仿人类决策过程的机器学习算法,它通过学习简单的决策规则来预测目标值或分类。决策树通过树状图的形式表现,其中每个内部节点代表一个特征上的判断,每个分支代表判断的结果,每个叶节点代表最终的决策结果。
2024-08-23 15:44:51
1284
原创 Python交互式学习-Pandas(上)
Pandas 是 Numpy 的封装库,继承了 Numpy 的很多优良传统,也具备丰富的功能组件,但是你还是得分情况来酌情选择要使用的工具Pandas 中,为了我们提供了日常最常用的数据存储方式,分别是 Series 的一维数据,和 DataFrame 的二维数据,在机器学习中,我们常会接触到 3 维甚至是更高维度, 但是在分析数据的时候,特别是,要结合 Excel 来分析数据的时候,二维数据才是最常用的。
2024-08-20 17:10:06
2023
原创 Python交互式学习-Numpy(基本操作)
Numpy 这个名字(Number + Python)体现了它在数学计算,科学计算方面突出的贡献。
2024-08-16 15:10:49
1237
1
原创 基础入门数据挖掘-建模调参
线性回归模型:线性回归对于特征的要求;处理长尾分布;理解线性回归模型;模型性能验证:评价函数与目标函数;交叉验证方法;留一验证方法;针对时间序列问题的验证;绘制学习率曲线;绘制验证曲线;嵌入式特征选择:Lasso回归;Ridge回归;决策树;模型对比:常用线性模型;常用非线性模型;模型调参:贪心调参方法;网格调参方法;贝叶斯调参方法;简单介绍模型调参方法,详细内容后续会展开学习。
2024-08-14 11:48:08
399
原创 基础入门数据挖掘-特征工程
异常处理:通过箱线图(或 3-Sigma)分析删除异常值;BOX-COX 转换(处理有偏分布);Box-Cox 转换是一种统计方法,用于使数据更接近正态分布,常用于满足线性回归模型和其他统计分析方法的前提条件。该转换由统计学家 George Box 和 David Cox 提出,用于处理数据的非正态性和异方差性。长尾截断;特征归一化/标准化:标准化(转换为标准正态分布);归一化(抓换到 [0,1] 区间);针对幂律分布这种分布中,大量事件集中在较小的数值范围,而较大的数值则较少见,
2024-08-14 11:32:11
346
原创 基础入门数据挖掘- 数据分析
数据探索在机器学习中我们一般称为EDA(Exploratory Data Analysis)是指对已有的数据(特别是调查或观察得来的原始数据)在尽量少的先验假定下进行探索,通过作图、制表、方程拟合、计算特征量等手段探索数据的结构和规律的一种数据分析方法。
2024-08-13 11:37:57
2009
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅