基础入门数据挖掘- 数据分析

目录

EDA-数据探索性分析

一、EDA目标

二、内容介绍

三、代码示例

总结


EDA-数据探索性分析

此部分为零基础入门数据挖掘的数据探索性分析部分,带你来了解数据,熟悉数据,和数据做朋友

数据探索在机器学习中我们一般称为EDA(Exploratory Data Analysis):

是指对已有的数据(特别是调查或观察得来的原始数据)在尽量少的先验假定下进行探索,通过作图、制表、方程拟合、计算特征量等手段探索数据的结构和规律的一种数据分析方法。

数据探索有利于我们发现数据的一些特性,数据之间的关联性,对于后续的特征构建是很有帮助的。

  1. 对于数据的初步分析(直接查看数据,或.sum(), .mean(),.descirbe()等统计函数)可以从:样本数量,训练集数量,是否有时间特征,是否是时许问题,特征所表示的含义(非匿名特征),特征类型(字符类似,int,float,time),特征的缺失情况(注意缺失的在数据中的表现形式,有些是空的有些是”NAN”符号等),特征的均值方差情况。

  2. 分析记录某些特征值缺失占比30%以上样本的缺失处理,有助于后续的模型验证和调节,分析特征应该是填充(填充方式是什么,均值填充,0填充,众数填充等),还是舍去,还是先做样本分类用不同的特征模型去预测。

  3. 对于异常值做专门的分析,分析特征异常的label是否为异常值(或者偏离均值较远或者事特殊符号),异常值是否应该剔除,还是用正常值填充,是记录异常,还是机器本身异常等。

  4. 对于Label做专门的分析,分析标签的分布情况等。

  5. 进步分析可以通过对特征作图,特征和label联合做图(统计图,离散图),直观了解特征的分布情况,通过这一步也可以发现数据之中的一些异常值等,通过箱型图分析一些特征值的偏离情况,对于特征和特征联合作图,对于特征和label联合作图,分析其中的一些关联性。


一、EDA目标

  • EDA的价值主要在于熟悉数据集,了解数据集,对数据集进行验证来确定所获得数据集可以用于接下来的机器学习或者深度学习使用。

  • 当了解了数据集之后我们下一步就是要去了解变量间的相互关系以及变量与预测值之间的存在关系。

  • 引导数据科学从业者进行数据处理以及特征工程的步骤,使数据集的结构和特征集让接下来的预测问题更加可靠。

  • 完成对于数据的探索性分析,并对于数据进行一些图表或者文字总结并打卡。

二、内容介绍

  1. 载入各种数据科学以及可视化库:
    • 数据科学库 pandas、numpy、scipy;
    • 可视化库 matplotlib、seabon;
    • 其他;
  2. 载入数据:
    • 载入训练集和测试集;
    • 简略观察数据(head()+shape);
  3. 数据总览:
    • 通过describe()来熟悉数据的相关统计量
    • 通过info()来熟悉数据类型
  4. 判断数据缺失和异常
    • 查看每列的存在nan情况
    • 异常值检测
  5. 了解预测值的分布
    • 总体分布概况(无界约翰逊分布等)
    • 查看skewness and kurtosis(偏度和分度)
    • 查看预测值的具体频数
  6. 特征分为类别特征和数字特征,并对类别特征查看unique分布

    unique()函数用于获取Series对象的唯一值。唯一性按出现顺序返回。基于哈希表的唯一,因此不排序

  7. 数字特征分析
    • 相关性分析
    • 查看几个特征得 偏度和峰值
    • 每个数字特征得分布可视化
    • 数字特征相互之间的关系可视化
    • 多变量互相回归关系可视化
  8. 类型特征分析
    • unique分布
    • 类别特征箱形图可视化
    • 类别特征的小提琴图可视化
    • 类别特征的柱形图可视化类别
    • 特征的每个类别频数可视化(count_plot)
  9. 用pandas_profiling生成数据报告

三、代码示例

1. 载入各种数据科学以及可视化库

#导入warnings包,利用过滤器来实现忽略警告语句。
import warnings
warnings.filterwarnings('ignore')

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msno

2、载入数据

3、总览数据概况

1) 通过describe()来熟悉数据的相关统计量
Train_data.describe()
2) 通过info()来熟悉数据类型
Train_data.info()

4、判断数据缺失和异常

1) 查看每列的存在nan情况
Train_data.isnull().sum()
# nan可视化
missing = Train_data.isnull().sum()
missing = missing[missing > 0]
missing.sort_values(inplace=True)
missing.plot.bar()
2) 查看异常值检测
Train_data.info()

5、了解预测值分布

1) 总体分布概况(无界约翰逊分布等)
import scipy.stats as st
y = Train_data['price']
plt.figure(1); plt.title('Johnson SU')
sns.distplot(y, kde=False, fit=st.johnsonsu)
plt.figure(2); plt.title('Normal')
sns.distplot(y, kde=False, fit=st.norm)
plt.figure(3); plt.title('Log Normal')
sns.distplot(y, kde=False, fit=st.lognorm)
2) 查看skewness and kurtosis
sns.distplot(Train_data['price']);
print("Skewness: %f" % Train_data['price'].skew())
print("Kurtosis: %f" % Train_data['price'].kurt())
3) 查看预测值的具体频数
plt.hist(Train_data['price'], orientation = 'vertical',histtype = 'bar', color ='red')
plt.show()
# log变换 z之后的分布较均匀,可以进行log变换进行预测,这也是预测问题常用的trick
plt.hist(np.log(Train_data['price']), orientation = 'vertical',histtype = 'bar', color ='red') 
plt.show()

5、特征分为类别特征和数字特征,并对类别特征查看unique分布

# 分离label即预测值
Y_train = Train_data['price']
# 数字特征
numeric_features = Train_data.select_dtypes(include=[np.number])
numeric_features.columns
# 类型特征
categorical_features = Train_data.select_dtypes(include=[np.object])
categorical_features.columns
# 特征nunique分布
for cat_fea in categorical_features:
    print(cat_fea + "的特征分布如下:")
    print("{}特征有个{}不同的值".format(cat_fea, Train_data[cat_fea].nunique()))
    print(Train_data[cat_fea].value_counts())

6、数字特征分析  

numeric_features.append('price')
1) 相关性分析
price_numeric = Train_data[numeric_features]
correlation = price_numeric.corr()
print(correlation['price'].sort_values(ascending = False),'\n')
2) 查看几个特征得 偏度和峰值
for col in numeric_features:
    print('{:15}'.format(col), 
          'Skewness: {:05.2f}'.format(Train_data[col].skew()) , 
          '   ' ,
          'Kurtosis: {:06.2f}'.format(Train_data[col].kurt())  
         )
3) 每个数字特征得分布可视化
f = pd.melt(Train_data, value_vars=numeric_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False)
g = g.map(sns.distplot, "value")
4) 数字特征相互之间的关系可视化
sns.set()
columns = ['price', 'v_12', 'v_8' , 'v_0', 'power', 'v_5',  'v_2', 'v_6', 'v_1', 'v_14']
sns.pairplot(Train_data[columns],size = 2 ,kind ='scatter',diag_kind='kde')
plt.show()

7、类别特征分析

1) unique分布
for fea in categorical_features:
    print(Train_data[fea].nunique())

2) 类别特征箱形图可视化

# 因为 name和 regionCode的类别太稀疏了,这里我们把不稀疏的几类画一下
categorical_features = ['model',
 'brand',
 'bodyType',
 'fuelType',
 'gearbox',
 'notRepairedDamage']
for c in categorical_features:
    Train_data[c] = Train_data[c].astype('category')
    if Train_data[c].isnull().any():
        Train_data[c] = Train_data[c].cat.add_categories(['MISSING'])
        Train_data[c] = Train_data[c].fillna('MISSING')

def boxplot(x, y, **kwargs):
    sns.boxplot(x=x, y=y)
    x=plt.xticks(rotation=90)

f = pd.melt(Train_data, id_vars=['price'], value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(boxplot, "value", "price")

3) 类别特征的小提琴图可视化
catg_list = categorical_features
target = 'price'
for catg in catg_list :
    sns.violinplot(x=catg, y=target, data=Train_data)
    plt.show()

4) 类别特征的柱形图可视化
def bar_plot(x, y, **kwargs):
    sns.barplot(x=x, y=y)
    x=plt.xticks(rotation=90)

f = pd.melt(Train_data, id_vars=['price'], value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(bar_plot, "value", "price")

5) 类别特征的每个类别频数可视化(count_plot)
def count_plot(x,  **kwargs):
    sns.countplot(x=x)
    x=plt.xticks(rotation=90)

f = pd.melt(Train_data,  value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(count_plot, "value")

8、用pandas_profiling生成数据报告

import pandas_profiling
pfr = pandas_profiling.ProfileReport(Train_data)
pfr.to_file("./")

 

 

 

 


总结

所给出的EDA步骤为广为普遍的步骤,在实际的不管是工程还是比赛过程中,这只是最开始的一步,也是最基本的一步。

接下来一般要结合模型的效果以及特征工程等来分析数据的实际建模情况,根据自己的一些理解,查阅文献,对实际问题做出判断和深入的理解。

最后不断进行EDA与数据处理和挖掘,来到达更好的数据结构和分布以及较为强势相关的特征

  • 19
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 零基础入门数据挖掘-心跳信号分类预测是一门数据挖掘技术的课程,旨在帮助零基础的学习者了解数据挖掘的基本概念和技术,以及如何应用这些技术来预测心跳信号的分类。该课程涵盖了数据预处理、特征提取、模型训练和评估等方面的内容,通过实践案例和练习,让学习者掌握数据挖掘的基本方法和技巧,提高数据分析和预测的能力。 ### 回答2: 数据挖掘是一种抽取数据中潜在信息的方法,通过对数据的深度分析,可以从海量的数据中发现异常趋势、模式和规律,从而为数据分析提供更多的洞见。心跳信号分类预测是一项基于数据挖掘技术的任务,其目标是对心跳信号进行分类,并预测出心脏病患者的风险。 在零基础学习数据挖掘时,需要掌握一些基本概念和技术。首先,需要了解数据预处理的基本方法,包括数据清洗、数据转换、数据集成和数据规约。数据挖掘的一项重要工作是特征选择,这是通过从原始数据中选取最具代表性的数据特征来提高模型的预测性能。特征选择的主要方法包括过滤法、包裹法和嵌入法。 数据挖掘中的常用算法包括决策树、KNN、朴素贝叶斯、神经网络和支持向量机等。 在进行心跳信号分类预测的情况下,常用的算法包括卷积神经网络(CNN)、长短期记忆网络(LSTM)和一些监督学习算法,如支持向量机(SVM)和K-最近邻(KNN)算法等。 在进行实际应用时,还需要注意如何选择正确的性能指标来评估分类模型的性能。如:召回率,精确率,F1得分等。实验操作和编程语言方面,可以学习使用Python等编程语言来实现数据挖掘模型,常用的数据挖掘工具包有Scikit-learn和Tensorflow等。 总之,零基础入门数据挖掘-心跳信号分类预测需要花费一定的时间和精力,同时需要有扎实的数理基础、编程技能和实际应用经验。在学习中,需要注重细节和思路的整理,尽可能摆脱机械性的模仿和应试心态,以寻找创新点和优化方案,提高模型的预测性能。 ### 回答3: 数据挖掘是一门快速发展的技术,随着人工智能的不断发展和应用,数据挖掘也逐渐成为一个备受关注的领域。在其中,心跳信号分类预测是一项重要的应用,因为它能够对人类的健康状况进行诊断和预测。 零基础入门数据挖掘-心跳信号分类预测,首先需要了解什么是数据挖掘数据挖掘是一种从大量数据中提取到有用信息的过程,它可以帮助我们更好地理解数据或找出其中隐藏的模式。数据挖掘主要分为数据预处理、特征提取、数据建模和模型评估等过程。 对于心跳信号分类预测问题,我们需要从一定数量的数据样本中提取出有用的特征,并将其转换为模型可以处理的数字信息。这一过程需要对特征值进行筛选和处理,以确保数据的精度和可靠性。 建立好的数据模型需要进行训练,并从训练集中学习到解决问题的规律和模式,进而可以对新的数据进行预测和分类。模型的质量和准确性取决于训练集的质量和大小,以及选择的算法和模型。 在这个过程中,我们需要使用一些数据挖掘工具和算法,例如Python,R,SPSS等。这些工具可以帮助我们更有效地处理数据和构建数据模型。 总之,零基础入门数据挖掘-心跳信号分类预测需要一定的学习和实践,需要掌握一些基本的数据挖掘知识和技巧,才能达到良好的预测效果和应用价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值