LeetCode--42

42. 接雨水

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。

示例 1:

输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。 

示例 2:

输入:height = [4,2,0,3,2,5]
输出:9

提示:

  • n == height.length
  • 1 <= n <= 2 * 104
  • 0 <= height[i] <= 105

先看我的代码:

class Solution {
public:
    int trap(vector<int>& height) {
        int len=height.size();
        auto Maxheight=max_element(height.begin(),height.end());
        int maxheight=*Maxheight;
        int num=0;
        for(int i=1;i<=maxheight;i++)
        {
            vector<int> a;
            int id=-1;
            for(int j=0;j<len;j++)
            {
                if(height[j]>=i)
                {
                a.push_back(j);
                id++;
                if(id>0)
                num+=a[id]-a[id-1]-1;
                }

            }
        }
        return num;
    }
};

有一个小缺陷,不能通过所有的测试案例:

只有4个测试案例没有通过,说明我的思路是正确的,但是没有考虑到时间复杂度,说没有考虑也不对,我刚开始写出的代码是这样的:

class Solution {
public:
    int trap(vector<int>& height) {
        int len=height.size();
        auto Maxheight=max_element(height.begin(),height.end());
        int maxheight=*Maxheight;
        int num=0;
        for(int i=1;i<=maxheight;i++)
        {
            vector<int> a;
            for(int j=0;j<len;j++)
            {
                if(height[j]>=i)
                a.push_back(j);

            }
            int Si=a.size();
            if(Si>=2)
            {
                for(int h=0;h<Si-1;h++)
                {
                    num+=a[h+1]-a[h]-1;
                }
            }
        }
        return num;
    }
};

显然,这样时间复杂度更大。

下面 是标准答案:

class Solution {
public:
    int trap(vector<int>& height) {
        int n=height.size();
        if(n==0)
        {
            return 0;
        }
        vector<int>leftMax(n);
        leftMax[0]=height[0];
        for(int i=1;i<n;i++)
        {
            leftMax[i]=max(leftMax[i-1],height[i]);
        }
        vector<int>rightMax(n);
        rightMax[n-1]=height[n-1];
        for(int i=n-2;i>=0;i--)
        {
            rightMax[i]=max(rightMax[i+1],height[i]);
        }
        int ans=0;
        for(int i=0;i<n;i++)
        {
            ans+=min(leftMax[i],rightMax[i])-height[i];
        }
        return ans;

    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丘小羽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值