【大数据】—“西游记“全集文本数据挖掘分析实战教程

项目背景介绍

四大名著,又称四大小说,是汉语文学中经典作品。这四部著作历久不衰,其中的故事、场景,已经深深地影响了国人的思想观念、价值取向。四部著作都有很高的艺术水平,细致的刻画和所蕴含的思想都为历代读者所称道。

本次将以小说《西游记》为例,介绍中文文本的统计分析和文本发掘等方面的基本知识。

数据准备

关于怎样获取小说,本文就不展示了,通过了一点技术手段,从某小说网站源代码里提取的,共101回(章)。

提取出来是长成下图这样的:
在这里插入图片描述

文件处理: 如果大家文件不是“.txt”结尾的,比如我的macbook显示的就是可执行文件,可以通过下面的代码批量修改为“*.txt”的文本文件。

import os
import glob

# 获取当前目录下的所有文件
files = glob.glob('/Users/c/PycharmProjects/pythonProject/spyder/爬虫/百度小说/(异步爬虫)西游记/*')

# 遍历文件列表,为每个文件添加.txt后缀
for file in files:
    # 检查文件是否已经是.txt格式
    if not file.endswith('.txt'):
        # 为文件添加.txt后缀
        new_file = file + '.txt'
        # 重命名文件
        os.rename(file, new_file)

文本处理:
现在需要将101回全部合并到一个文本文件里,用手复制吗?NO,肯定是用代码搞定了。

import os
import glob

# 获取所有txt文件
txt_files = glob.glob('/Users/c/PycharmProjects/pythonProject/spyder/爬虫/百度小说/(异步爬虫)西游记/*.txt')

# 创建一个新的文件用于存储合并后的内容
with open('合并文本.txt', 'w', encoding='utf-8') as merged_file:
    # 遍历所有txt文件
    for file in txt_files:
        # 读取文件内容
        with open(file, 'r', encoding='utf-8') as f:
            content = f.read()
        # 将文件内容写入到新文件中
        merged_file.write(content)
        merged_file.write('\n')  # 在每个文件内容之间添加换行符

合并后长这样,可以仔细看第一行和最后一行就明白了:

在这里插入图片描述

项目流程

获取文本:

# 获取文本数据
with open('/Users/c/jupyter lab/练习/合并文本.txt','r',encoding='utf-8')as f:
    text = f.read()
import jieba
 
# 分词并统计词频
def wordFreq(text,topn):
    words = jieba.lcut(text.strip()) # 对文本进行分词操作
    counts = {}
    for word in words:  # 统计每个词出现的频率,存放在字典counts中
        if len(word) == 1:  # 如果该词的长度为1,则跳过,不参与统计。
            continue
        counts[word] = counts.get(word,0) + 1
    items = list(counts.items())
    items.sort(key=lambda x:x[1],reverse=True)  # 按照词频进行排序
    f = open('HLM_词频.txt','w',encoding='utf-8')
    for i in range(topn):  # topn表示要取的词的个数,将频率最高的topn个词及其频率数存放在文件中
        word,count = items[i]
        f.writelines("{}\t{}\n".format(word,count))
    f.close() 
 
wordFreq(text,20)  # 这里我们提取出频率最高的前20个词

上面我们读取了文本,首先进行文本分词,不统计字符长度为1的词语,将分词后按词语出现的总次数(频数)进行降序排列保存至’HLM_词频.txt’文件内,见下图,词语出现最多的是行者,出现了4012次,毕竟是主角。

在这里插入图片描述

我们还可以去除停用词,也就是你不想统计的词语,在上面代码的基础上修改即可,就不展示结果了,只上代码。

# 分词并统计词频
def wordFreq(text,topn):
    words = jieba.lcut(text.strip()) # 对文本进行分词操作
    # 加载停用词库
    stopwords = [line.strip() for line in open('停用词库.txt','r',encoding='utf-8').readlines()]
    counts = {}
    for word in words:  # 统计每个词出现的频率,存放在字典counts中
        if len(word) == 1:  # 如果该词的长度为1,则跳过,不参与统计。
            continue
        elif word not in stopwords:  # 如果该词不在停用词列表stopwords中,才参与统计
            counts[word] = counts.get(word,0) + 1
    items = list(counts.items())
    items.sort(key=lambda x:x[1],reverse=True)  # 按照词频进行排序
    f = open('HLM_词频.txt','w',encoding='utf-8')
    for i in range(topn):  # topn表示要取的词的个数,将频率最高的topn个词及其频率数存放在文件中
        word,count = items[i]
        f.writelines("{}\t{}\n".format(word,count))
    f.close() 

注意的是需要将不想统计的词语提前存入文本文件内。

绘制词云图:

# 绘制词云
import matplotlib.pyplot as plt
import wordcloud
import imageio
wordFreq(text,500)  # 获取TOP500的词频
word_cloud_text = open('HLM_词频.txt','r',encoding='utf-8').read()
bg_pic = imageio.imread('WechatIMG436.jpg') # 读入形状图片
wc = wordcloud.WordCloud(font_path='/Library/Fonts/Arial Unicode.ttf',
                            background_color='white',
                            width=1000,
                            max_words=200,
                            mask=bg_pic,  # mask参数设置词云形状
                            height=860,
                            margin=2
                            ).generate(word_cloud_text)
wc.to_file('HLMcloud_star.png')  # 保存图片

在这里插入图片描述
老规矩给大家科谱一下怎样看词云图:上图是用出现次数最多的前500词语进行绘制的。

词云图 是一种可视化表示文本数据的方法,通过使不同频率的词汇以不同的字体大小显示出来,形成一种视觉上的“云”效果。它被广泛用于展示大量的文本数据中的关键词,直观地显示各个词的重要性和频率。以下是具体介绍:

使用场景:

  • 词云图可以在不同的形状模板中生成,如圆形、心形、菱形等,增加视觉效果。
  • 支持多种颜色配色方案,用户可以根据需要选择合适的配色。
  • 在线工具如易词云提供分词功能,特别适合中文文本的处理。
  • 能够导出为常用的图像格式(如jpg, png)或pdf文件,方便分享和展示。

技术实现:

  • 许多在线词云图生成器支持用户直接上传文本或Excel文件,并自动统计词频生成词云图。
  • 部分工具允许用户自定义词云图中的文字大小、间隙和旋转角度等参数。
  • 高级用户可以通过JSON配置编辑ECharts图表参数,实现更高级的个性化设置。

操作指南:

  • 在设计词云图时,建议每行文字保持在2到6个字之间,以获得最佳显示效果。
  • 当使用自选图片模式时,如果图片分辨率较高,则可以适当增加内容;反之,则应减少内容以防生成的词云图过于拥挤。
  • 对于自选形状模式,不建议设置过多内容,以免形状不明显,影响最终效果。

优化建议:

  • 考虑使用轮廓图片,使词云图沿着轮廓图片的非白色区域延申,增加视觉效果。
  • 合理利用停用词功能来排除无关的常见词汇,使关键内容更突出。

开源工具:

  • 可以利用如jieba分词增强词云图的中文处理能力,highcharts提供的词云图生成js等开源工具进行高度定制的开发。

官方的东西说半天没说到重点,我来总结就是字体越大,代表文本中出现的次数越多。

章回处理

已知我们已将101个文本文件合并到了一起,我们现在需要做一个工作就是统计每回合有多少字,是从多少至多少,听着很难,做着试试吧。

# 章回处理
import re
chapter = re.findall('第[\u4e00-\u9fa5]+回',text)
lst_chapter = []
for x in chapter:  # 去除重复的章节
    if x not in lst_chapter and len(x)<=5:
        lst_chapter.append(x)
print(lst_chapter)

运行代码看看:
在这里插入图片描述
通过正则匹配,找到文中所有“第**回”形式的字符。

获取每一回起始和结束共计多少字符:

lst_start_chapterIndex = []
for x in lst_chapter:  # 找出每一回在原文中的起始位置
    lst_start_chapterIndex.append(text.index(x))
 
lst_end_chapterIndex = lst_start_chapterIndex[1:]+[len(text)]  # 找出每一回在原文中的结束位置,本回的结束位置就是下一回的起始位置。最后一回的结束位置就是全文的结束。zip将每一回的起始和结束位置拼成一个元组,存放在lst_chapterindex列表中。
lst_chapterIndex = list(zip(lst_start_chapterIndex,lst_end_chapterIndex))
print(lst_chapterIndex)

运行代码看到的就是区间数据:
在这里插入图片描述
下面用简单难看的折线图来展示每回合行者出现的次数(好看的图画着都很费力),原著里好像说的悟空叫行者,反正我没看过。

# 统计行者出现的次数
cnt_liulaolao = []
for i in range(99):
    start = lst_chapterIndex[i][0]
    end = lst_chapterIndex[i][1]
    cnt_liulaolao.append(text[start:end].count('行者'))
plt.rcParams['font.sans-serif'] = ['SimHei'] #解决中文显示
plt.rcParams['axes.unicode_minus'] = False   #解决符号无法显示
plt.figure(figsize=(15,6))
plt.plot(range(99),cnt_liulaolao,label='行者出场次数')
plt.title('《西游记》——孙行者暴打各路妖怪',fontdict={'fontsize':14})
plt.xlabel('章节数',fontdict={'fontsize':14})
plt.ylabel('出现次数',fontdict={'fontsize':14})
plt.legend()
plt.show()

在这里插入图片描述
打个小结,学会以上的文本方法,在工作中分析点小文本就太简单了。

创作不易,点赞,评论,转发三连走起!

  • 24
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
在Python中进行《西游记文本分析可以使用以下步骤: 1. 读取文本文件:使用Python的文件操作函数,如`open()`函数,打开《西游记文本文件,并将其读取为字符串。 2. 分析文本内容:使用字符串操作函数和正则表达式,对文本进行处理和分析。可以使用`split()`函数将文本按照空格或其他分隔符拆分成单词,使用`re.findall()`函数匹配特定的词语或模式。 3. 生成字频统计结果:使用字典数据结构,统计每个单词的出现次数。遍历文本中的每个单词,如果单词已经在字典中,则将其计数加1;如果单词不在字典中,则将其添加到字典并设置计数为1。 以下是一个示例代码,用于实现对《西游记文本的用字统计操作[^2]: ```python import re # 读取文本文件 with open('xyj.txt', 'r', encoding='utf-8') as file: text = file.read() # 分析文本内容 words = re.findall(r'\b\w+\b', text.lower()) # 生成字频统计结果 word_count = {} for word in words: if word in word_count: word_count[word] += 1 else: word_count[word] = 1 # 打印字频统计结果 for word, count in word_count.items(): print(f'{word}: {count}') ``` 这段代码首先使用`open()`函数打开《西游记文本文件,并使用`read()`方法将其读取为字符串。然后使用正则表达式`re.findall()`函数匹配文本中的单词,并将其转换为小写字母形式。接下来,使用字典`word_count`统计每个单词的出现次数。最后,遍历字典并打印每个单词及其出现次数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花花 Show Python

你的打赏会让我有创作的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值