自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 主成分分析PCA

机器学习中的主成分分析(,Principal Component Analysis)是一种常用的非监督学习算法,主要用于数据降维和特征提取。

2024-06-16 13:18:30 935

原创 支持向量机SVM

定义:支持向量机是一种广义线性分类器,通过求解最大边距超平面来对数据进行二元分类。原理:给定一组训练样本集,SVM的目标是找到一个超平面(在二维空间中为一条直线,三维空间中为一个平面,高维空间中则为超平面),使得该超平面能够将不同类别的样本分隔开,并且使得分隔的间隔最大。这些位于间隔边界上的样本点被称为"支持向量"。在二维空间中,超平面表现为一条直线;在三维空间中,表现为一个平面;而在高维空间中,则是一个超平面。超平面可以用线性方程表示为,其中 w 是法向量,决定了超平面的方向;

2024-06-11 13:49:23 899

原创 逻辑回归logistic

逻辑回归(Logistic Regression)是一种用于解决二分类(0/1)问题的统计学习方法。虽然它名为“回归”,但实际上它是一种分类方法,因为它预测的是样本属于某个类别的概率。逻辑回归通过引入逻辑函数(Sigmoid函数)来将线性回归的输出映射到[0, 1]区间,从而得到属于某个类别的概率。

2024-05-28 23:09:26 657

原创 贝叶斯分类器

贝叶斯分类算法是统计学中的一种分类方法,它是一类利用概率统计知识进行分类的算法。在许多场合,朴素贝叶斯分类算法可以与决策树和神经网络分类算法相媲美,该算法能运用到大型数据中,而且方法简单、分类准确率高、速度快。其主要思想为:先验概率+当下数据后验概率其中:(1)先验概率:即基于统计的概率,是基于以往历史经验和分析得到的结果,不需要依赖当前发生的条件。(2)后验概率:则是从条件概率而来,由因推果,是基于当下发生了事件之后计算的概率,依赖于当前发生的条件。

2024-05-12 21:57:39 759 1

原创 超级决策树

总结:信息增益倾向于选择取值较多的特征,可以通过增加数据的多样性来减少信息的不确定性;基尼指数在小数据上表现更稳定,关注的是数据集的不纯度通常在分类问题上使用信息增益较多,回归问题使用基尼指数较多数据集小、特征取值分布不均匀,基尼指数较好;数据集大、特征取值分布均匀,信息增益较合适p_%7Bk%7D。

2024-04-29 22:19:13 600

原创 roc曲线和pr曲线

2.TPR的分母是所有正例,FPR的分母是所有负例, 不依赖于具体的类别分布,不会随着类别分布的改变而改变。P-R曲线:P为precision查准率,R为recall查全率,以查准率为纵轴、查全率为横轴作图,所以P-R曲线是反映了“查准率”与“查全率”之间的关系。ROC曲线以真正例率TPR=TP/(TP+FN)为纵坐标,假正例率FPR=FP/(FP+TN)为横坐标绘制。对于二分问题,可将样本划分为:真正例TP,假正例FP,真反例TN,假反例FN。若两条曲线发生交叉,曲线下面积AUC越大,预测准确率越高。

2024-04-15 19:08:36 659

原创 KNN算法

KNN(k-NearestNeighbor)又被称为近邻算法,它的核心思想是:物以类聚,人以群分。1.算法步骤(1)计算测试对象到训练集中每个对象的距离其中距离的计算可采用欧氏距离 d = sqrt [ ∑( ( a - b )^2 ) ] (i = 1、2…n)(2)按照距离从小到大排序(3)选取与当前测试对象最近的K个训练对象(4)统计这K个对象的类别概率(5)这K个对象里频率最高的类别,即为测试对象的类别。2.优缺点。

2024-04-01 11:45:35 153

原创 Anaconda安装教程

1.同时按win+r,输入cmd,在弹出的命令行中输入conda --version,出现conda...6.一共五个,这五个文件夹的地址,复制过来。2.输入python出现python版本就表示配置成功。3.在系统变量里找到Path,点击。5.在文件找到刚刚需要记住的位置。1.点击打开安装包,next。1.系统里面找到高级系统设置。3.选择all users。8.finish完成啦。

2024-03-13 18:22:56 807

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除