Regular graph and line graph (正则图和线图)(一)

(1)正则图的定义:如果一个图的每个顶点的度数都是k,则称这个图是k正则的。

(2)正则图的性质:命题1、命题2和推论1

命题1:设\Gammak度正则图,则:

k\Gamma的特征值;

如果\Gamma是连通的,那么k的重数为1;

对于\Gamma的任何特征值\lambda,我们有\left | \lambda \right |\leqslant k.

命题2:矩阵J属于邻接代数A(\Gamma )当且仅当\Gamma是正则连通图.

推论1:设\Gammank正则连通图,设\Gamma的不同特征值为k> \lambda _{1}> \lambda _{2} >\cdot \cdot \cdot > \lambda _{s-1},则如果q(\lambda )=\prod (\lambda -\lambda _{i}),其中乘积在1\leq i\leq s-1的范围内,我们有:

J=(\frac{n}{q(k)})q(A)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值