1、几何重数
特征值,
与特征值
关联的非零向量
,满足
2、秩和零空间
秩:表示矩阵
的线性独立行或列的数量.也可理解为该矩阵的线性变换所生成的列空间的维度.
零空间:矩阵的零空间是所有使得
的向量
的集合.零空间的维度也称为核的维度.
3、维度定理
在任意线性变换中,维度定理告诉我们,矩阵的维度可以拆分为秩和零空间的维度之和:
注:是矩阵的总维度,
即零空间的维度,即几何重数
4、对称矩阵
可对角化
几何重数=代数重数
1、几何重数
特征值,
与特征值
关联的非零向量
,满足
2、秩和零空间
秩:表示矩阵
的线性独立行或列的数量.也可理解为该矩阵的线性变换所生成的列空间的维度.
零空间:矩阵的零空间是所有使得
的向量
的集合.零空间的维度也称为核的维度.
3、维度定理
在任意线性变换中,维度定理告诉我们,矩阵的维度可以拆分为秩和零空间的维度之和:
注:是矩阵的总维度,
即零空间的维度,即几何重数
4、对称矩阵
可对角化
几何重数=代数重数