本文用于介绍如何使用MATLAB进行数据处理,将会列举由小编整理的九种数据处理方法,用于解决数据处理当中的四类问题,因涉及一些数学理念和较为复杂的MATLAB代码,本文适合于具有一定MATLAB基础和数学基础的编程人员进行学习,对于初学者而言,只需要学会如何调用具体方法的代码即可。
一、检验数据是否满足正态分布
数据分布的正态性在数据处理中是一种很好的性质,因此在拿到数据之后应该先观察这组数据是否满足正态分布,也为数据处理后续步骤的方法选择提供了偏向性。
1.直方图法
直方图法是一种观测法,通过观察直方图的形状来确定该数据是否满足正态分布,是最为直观的正态分布检验方法,示例内容如下所示。
data=randn(1000,1);% 生成随机数据
figure;% 显示图形
N=10;% 10个区间桶
hist(data);% 绘制直方图
grid on;% 显示网格
[count,site]=histcounts(data, N);% 得到直方图节点数量及位置
2.P-P图法
P-P图法是一种观测法,通过观察数据与斜线的重合度来判断是否满足正态分布,数据与斜线的重合度越高,则越满足正态分布,示例内容如下所示。
data