第八章 排序——归并排序(Merge Sort)

 

归并排序时间复杂度优于上述排序 。

归并排序的原理

归并排序算法的实现

(1)设3个指针,左侧值针,右侧指针,结果(指向归并数据)。

(2)将小的元素放到结果指针。

(3)结果指针和右侧指针右移

(4)重复上述步骤

void Merge (Rcd R[], int low, int mid, int high)
{
//将左侧R[low..mid]与右侧R[mid+1..high]归并到全局数组T[low..high]再写回R
    P_left=low; //左侧左边界
    P_right=mid+1;//右侧左边界
    P_result=low;//存放归并数组的第一个空闲位置
    while(P_left<=mid &&P_right<=high ) //两者都不超过边界
    {
        if(R[P_left]<R[P_right])
        {
            T[P_result]=R[P_left];//存储数据
            P_result++;
            P_left++; //指针后移
        }
        else
        {
            T[P_result]=R[P_right];
            P_result++;
            P_right++;
        }
    }
    //将剩余元素填入目标数组右侧
    if(P_left<=mid)
        do
        {
            T[P_result]=R[P_left];
            P_result++;
            P_left++;
        }
        while(P_left<=mid );
    else
        do
        {
            T[P_result]=R[P_right];
            P_result++;
            P_right++;
        }
        while(P_right<=high );
}
void MSort( Rcd R[], int low, int high,  Rcd &T[]){
  //对R[low..high]进行归并排序,结果存入T[low..high]
    if( low == high ) T[low]=R[low]; //递归边界       
    else{
        mid=(low+high)/2;
        MSort(R, low , mid, S); //左侧递归
        MSort(R, mid+1, high, S);//右侧递归
        Merge(S, low, mid, high, T); //归并
    }
}

Rcd S[N]; void main(){… ;   Msort(R,1,N,R); …}

算法分析 

归并排序的时间复杂度为O(nlog2n),其中n是待排序元素的数量。最好最坏都一样。

归并排序的空间复杂度为S(n)=O(n)

 

总结与推广

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值