概统第2章——随机变量及其分布

概统第2章——随机变量及其分布

  什么,你问第1章去哪儿了?因为第1章都是基础内容,大部分高中时期已经学过。只需理解概率的公理化定义(尤其注意其中可列可加性有限可加性的区别,前者是公理,是无穷多个互不相容的随机事件的和,后者是从公理中推出来的结论,并且由有限可加性无法推出可列可加性),以及记住由条件概率乘法公式引出的全概率公式和贝叶斯公式即可。
  这里也列出上述公式:
  条件概率乘法公式:
请添加图片描述
  全概率公式:
请添加图片描述
  这里需要注意 B i B_i Bi的和并非一定要为 S S S,只需要其和包含事件 A A A就可以使用全概率公式。
  贝叶斯公式:
请添加图片描述
  那我们就正式开始第2章的内容吧!
  本章的重点为随机变量的分布函数,包括离散型随机变量的概率分布(分布律)、和连续型随机变量的概率分布(引出其概率密度函数),并且需要掌握几种常见的离散或者连续型随机变量的分布.

1.随机变量的分布函数

  定义如下:
请添加图片描述
  简称分布函数,记为 X ∼ F ( x ) X\sim F(x) XF(x).
  分布函数具有以下性质:
请添加图片描述
  其中(3)(4)两个性质被频繁用于分布函数求解参数的考察中,性质(5)(6)则考察具体的计算层面

2.离散型随机变量及其概率分布

  也叫分布律/分布列。顾名思义,这种分布的随机变量只能取到有限个或者可列无穷个实数值,一般可以用公式或者列表的方式描述。
  分布律和分布函数的关系:
请添加图片描述
  可见对于离散型随机变量而言,分布律比普通的分布函数更加直观

3.几个重要的离散型随机变量的分布律

1.两点分布

  一个非常简单的分布,通过列表的方式表示如下:
请添加图片描述

2.泊松分布

  泊松分布是一种很有用的分布,具有广泛的实际应用价值,它可能在你意想不到的地方出现。
  泊松分布的概念如下:
请添加图片描述

3.超几何分布

  高中时已经接触过的一种简单分布,在这里也没有什么新东西,此处不再赘述。

4.二项分布

  也是在高中时就已经接触到的一种重要分布,不过加入了一些新的东西,就是二项分布的近似计算。
  当二项分布 B ( n , p ) B(n,p) B(n,p)中的 n n n很大而 p p p又很小时,二项分布的概率是非常接近泊松分布的。
  事实上,当 n → + ∞ n\rightarrow+\infty n+时,可以证明:
请添加图片描述
  学到后面就知道, λ \lambda λ即为该二项分布的数学期望
  具体而言:
请添加图片描述
  接下来就是去查泊松分布表,就可以较为方便快速地求出二项分布的概率值。

5.一些有趣的结论

  1.超几何分布的极限分布是二项分布,二项分布的极限分布是泊松分布。
  2.一类较为综合、难度较高的经典例题,可以抽象为以下情况:
在这里插入图片描述
  此外还有一个大家也比较熟悉的小概念,就是小概率事件(又称实际推断原理),也就是一次试验中可以认为不发生的事件。

4.连续型随机变量及其概率密度函数

  连续型随机变量和概率密度函数的定义:
在这里插入图片描述
  概率密度函数具有以下性质:
在这里插入图片描述

5.一些重要的连续型随机变量的分布

1.均匀分布

  一种非常简单的连续型随机变量的分布,其描述如下:
在这里插入图片描述

2.指数分布

  指数分布的概率密度函数为:
在这里插入图片描述
  若 ζ \zeta ζ的概率密度函数为上述形式,则称 ζ \zeta ζ满足参数为 λ \lambda λ 的指数分布
  据此可求得其分布函数:
在这里插入图片描述

3.(娱乐向)韦布尔(Weibull)分布

  韦布尔分布的概率密度函数如下:
在这里插入图片描述
  若 ζ \zeta ζ的概率密度函数为上述形式,则称 ζ \zeta ζ满足参数为 η , β , x 0 \eta,\beta,x_0 η,β,x0 的韦布尔分布,记作 ζ ∼ W ( η , β , x 0 ) \zeta\sim W(\eta,\beta,x_0) ζW(η,β,x0) η \eta η称为尺度参数(或者量纲参数、特征寿命), β \beta β称为形状参数, x 0 x_0 x0称为位置参数,
   β \beta β等于1时,韦布尔分布等价于指数分布。

4.(娱乐向) Γ \Gamma Γ函数

   Γ \Gamma Γ分布的概率密度函数如下:
在这里插入图片描述
  若 ζ \zeta ζ的概率密度函数为上述形式,则称 ζ \zeta ζ服从参数为 α , β \alpha,\beta α,β Γ \Gamma Γ分布,记作 ζ ∼ Γ ( α , β ) \zeta\sim \Gamma(\alpha,\beta) ζΓ(α,β)

6.正态分布

1.正态分布的引入和基本性质

  正态分布十分十分重要!因此专门给它列出一个小节
  首先我们要知道一个用于引入正态分布的积分:欧拉-泊松积分,其描述如下:
在这里插入图片描述
  我们可以借此引入正态分布:
在这里插入图片描述
  若 ζ \zeta ζ的概率密度函数为上述形式,则称 ζ \zeta ζ服从参数为 μ , σ \mu,\sigma μ,σ 的正态分布,记作 ζ ∼ N ( μ , σ 2 ) \zeta\sim N(\mu,\sigma^2) ζN(μ,σ2)
  正态分布密度曲线具有以下性质:
在这里插入图片描述

2.标准正态分布

在这里插入图片描述
  正因为标准正态分布十分重要,人们已经制作好了标准正态分布表,可以根据 x x x查找 Φ ( x ) \Phi(x) Φ(x),也可以根据 Φ ( x ) \Phi(x) Φ(x)找到 x x x
  这里顺便提一下标准正态分布的** 3 σ 3\sigma 3σ原理**: x x x落入 ( μ − 3 σ , μ + 3 σ ) (\mu-3\sigma,\mu+3\sigma) (μ3σ,μ+3σ)的概率非常接近1(0.9974),超出此区间的概率很小,在实际应用中可以认为不会超过此区间。

3.正态分布化为标准正态分布

  正态分布函数与标准正态分布函数 Φ \Phi Φ具有以下转换关系:
在这里插入图片描述
  根据这一式子我们可以求出一切正态分布的任意分布函数值。

4.标准正态分布的 α − \alpha- α分位点

  看起来这个概念很高级,实际上就是当标准正态分布函数 Φ ( x ) \Phi(x) Φ(x)的值为 α \alpha α x x x的值, x x x就被称为 α − \alpha- α分位点
   α − \alpha- α分位点具有以下性质:
在这里插入图片描述
  本章到此结束,例题自己去找,没有下一章了我懒得写了

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值