时隔一年的更新,懒得做下一期了,自己复习去()
二元运算 = 封闭性
群 = 封闭性 + 结合律 + 单位元 (唯一)+ 均有逆元(唯一)
(证明唯一性:假设有两个不同的单位元/逆元)
阿贝尔(Abel)群 = 群 + 交换律
群阶 = 群元素个数
常见群:整数加群 ( Z , + ) (\Z,+) (Z,+)、剩余加群 Z n \Z_n Zn、剩余乘群 Z n ∗ \Z_n^* Zn∗、一般线性群 G L ( n , R ) GL(n,\R) GL(n,R)、特殊线性群 S L ( n , R ) SL(n,\R) SL(n,R)
乘法表:直观表示各元素间的运算关系(通过乘法表判断是否为群)
群有许多等价定义,课程中介绍了这么一种定义:
群 = 封闭性 + 结合律 + ∀ a , b ∈ G , \forall a,b\in G, ∀a,b∈G,方程 a x = b , y a = b ax=b,ya=b ax=b,ya=b有解
有限群 = 封闭性 + 结合律 + 消去律
(注:这个定理的成立建立在两个集合中的元素能够一一对应则两个集合相等的基础之上,所以必须限定有限群。因为两个不相等的无限群之间也有可能建立一一对应)
元素阶: ∀ a ∈ G , ∃ d ∈ N ∗ , a d = e \forall a\in G,\exists d \in \N^*,a^d=e ∀a∈G,∃d∈N∗,ad=e,则称满足条件的最小正整数 d d d为元素 a a a的阶,记作 o ( a ) o(a) o(a)。如果 d d d不存在,记 o ( a ) = ∞ o(a)=\infty o(a)=∞
数论中所涉及的阶实际上就是剩余乘群 Z m ∗ \Z_m^* Zm∗中元素的阶
阶的性质: d d d为 a a a的阶,且 a k = e a^k=e ak=e,则 d ∣ k d|k d∣k
阶数公式: n n n为 a a a的阶,则 n ( r , n ) \frac{n}{(r,n)} (r,n)n为 a r a^r ar的阶
(!!!重要)拉格朗日定理:任意群元素的阶整除群阶
子群 = 子集 + 群
子群例子: n Z ≤ Z n\Z\leq \Z nZ≤Z, S L ( n , R ) ≤ G L ( n , R ) SL(n,\R)\leq GL(n,\R) SL(n,R)≤GL(n,R)
(!!!重要)子群判定定理 :子群 = ∀ x , y ∈ H , x ⋅ y − 1 ∈ H \forall x,y\in H,x\cdot y^{-1}\in H ∀x,y∈H,x⋅y−1∈H
子群中的单位元和逆元就是原群中的单位元和逆元
一种重要子群: ∀ a ∈ G , H = { a k ∣ k ∈ Z } \forall a\in G,H=\{a^k|k\in \Z\} ∀a∈G,H={ak∣k∈Z}称为由 a a a生成的子群,记作 H = ( a ) H=(a) H=(a)
有限群子群 = ∀ a , b ∈ H , a ⋅ b ∈ H \forall a,b\in H,a\cdot b\in H ∀a,b∈H,a⋅b∈H
引入等价关系 ∼ \sim ∼:若 a , b ∈ G , a b − 1 ∈ a,b\in G,ab^{-1}\in a,b∈G,ab−1∈子群 H H H,则说 a a a与 b b b等价
陪集:(右陪集)对于元素 a ∈ G a\in G a∈G, a a a的右陪集 H a = { b ∣ a ∼ b } Ha=\{b|a\sim b\} Ha={b∣a∼b}
陪集更常用等价定义: H a = { h a ∣ h ∈ H } Ha=\{ha|h\in H\} Ha={ha∣h∈H}(右陪集), a H = { a h ∣ h ∈ H } aH=\{ah|h\in H\} aH={ah∣h∈H}(左陪集)
由这个定义很显然地看出,交换群的子群的左陪集等于右陪集。相应地,非交换群的左陪集一般不等于右陪集
但是,一个子群的左陪集和右陪集的个数一定相等(因为二者之间可以构造一一映射)
子群的指数:该子群的左陪集/右陪集的个数,记作 [ G : H ] [G:H] [G:H]
有限群指数公式: [ G : H ] = ∣ G ∣ ∣ H ∣ [G:H]=\frac{|G|}{|H|} [G:H]=∣H∣∣G∣(推论:有限群子群阶整除群阶)
与拉格朗日定理相联系: ∀ g ∈ G \forall g\in G ∀g∈G,设 g g g的阶为 d d d,则 { g , g 2 , . . . g d } \{g,g^2,...g^d\} {g,g2,...gd}是 G G G的一个子群,由此推出拉格朗日定理
关于陪集的等价结论: a H = b H ⇔ a ∈ b H / b ∈ a H ⇔ a − 1 b ∈ H / b − 1 a ∈ H ⇔ a H ∩ b H = ∅ aH=bH\Leftrightarrow a\in bH/b\in aH\Leftrightarrow a^{-1}b\in H/b^{-1}a\in H\Leftrightarrow aH\cap bH=\empty aH=bH⇔a∈bH/b∈aH⇔a−1b∈H/b−1a∈H⇔aH∩bH=∅
同态 = 保持运算( f ( a b ) = f ( a ) f ( b ) f(ab)=f(a)f(b) f(ab)=f(a)f(b))
同构 = 双射 + 保持运算
群同态 = 满射 + 保持运算
群同构 = 双射 + 保持运算
同态映射将单位元映为单位元,将逆元映为逆元,将群映为子群(若为满射则映为群)
变换:集合 X X X自己到自己的一一映射的集合,记为 T ( X ) T(X) T(X),
置换:若变换中的 X X X为有限集合,则可将 T ( X ) T(X) T(X)中的变换称为置换
变换群:在复合运算下, T ( X ) T(X) T(X)构成一群,称为变换群(一般为非交换群)
凯莱定理:任何一个群都同构于一个变换群,任何一个有限群都同构于一个置换群
置换群: X X X为有限集,则 T ( X ) T(X) T(X)称为置换群。
n n n元对称群:如果 ∣ X ∣ = n |X|=n ∣X∣=n,则 T ( x ) T(x) T(x)称为 n n n元对称群,记为 S n S_n Sn。 n n n元对称群的大小为 n ! n! n!
循环置换: S n S_n Sn中,一个把 i 1 i_1 i1变为 i 2 i_2 i2,把 i 2 i_2 i2变为 i 3 i_3 i3……把 i k i_k ik变为 i 1 i_1 i1,其余元素不变的置换,叫做一个“k-循环置换“,记为 ( i 1 i 2 . . . i k ) (i_1i_2...i_k) (i1i2...ik)。如果所有元素均不变,记为 ( i j ) (i_j) (ij),其中 i j i_j ij为 S n S_n Sn中的任意元素。
循环置换的性质:若两个循环置换 τ \tau τ和 σ \sigma σ不相交,则 σ τ = τ σ \sigma\tau=\tau\sigma στ=τσ
置换的表示方法:直接列两行数据表示,也可以写成不相连的循环置换的乘积
对换:只含有两个元素的置换
对换的性质:任意一个置换都可以表示为若干个对换的乘积。
将循环置换化为对换的方法: ( i 1 i 2 . . . i r ) = ( i 1 i r ) ( i 1 i r − 1 ) . . . ( i 1 i 3 ) ( i 1 i 2 ) (i_1i_2...i_r)=(i_1i_r)(i_1i_{r-1})...(i_1i_3)(i_1i_2) (i1i2...ir)=(i1ir)(i1ir−1)...(i1i3)(i1i2)( ( i 1 ) = ( 1 ) = ( 12 ) ( 12 ) (i_1)=(1)=(12)(12) (i1)=(1)=(12)(12))
当同一个置换表示为若干个对换的乘积后,对换的数量可能不同,但是对换的奇偶性不变,据此可以将置换分为奇置换和偶置换。
交错群: S n S_n Sn的所有偶置换 A n A_n An所构成的群。 ∣ A n ∣ = n ! 2 |A_n|=\frac{n!}{2} ∣An∣=2n!( S n S_n Sn中奇置换数量等于偶置换数量)
交错群的性质:交错群的左陪集等于右陪集
正规子群/不变子群:所有左陪集等于右陪集的子群,称为原群的正规子群,注意只是集合相等,它们的元素之间不一定有一一对应的关系
上述结论的两个推论:1)交错群是正规子群;2)由子群的左陪集等于右陪集,不能推出原群为交换群,但是反过来结论成立,即交换群的子群的左陪集等于右陪集(交换群的子群都是正规子群)。
(扩展定义)哈密顿群:所有子群均为正规子群的非交换群。
循环群:所有元素均可以写成某一个元素 a a a的幂(加法群就是所有元素均可以写成 a a a的倍数)
循环群的群阶就是元素 a a a的阶,如果 a a a的阶有限,那 G G G就是有限循环群,反之 G G G为无限循环群
循环群的例子:整数加群 Z \Z Z(生成元为 ± 1 ±1 ±1),剩余加群 Z m \Z_m Zm(生成元为与模互素的剩余类),剩余乘群 Z m ∗ \Z^*_m Zm∗(生成元为”原根“,所以没有原根的话就不是循环群)
有限循环群的生成元: G = ( a ) G=(a) G=(a)为 n n n阶循环群, a a a为生成元且 ( k , n ) = 1 ⇔ a k (k,n)=1\Leftrightarrow a^k (k,n)=1⇔ak也是 G G G的生成元,所以 G G G共有 ϕ ( n ) \phi(n) ϕ(n)个生成元
阶数公式: n n n为 a a a的阶,则 n ( r , n ) \frac{n}{(r,n)} (r,n)n为 a r a^r ar的阶
无限循环群的生成元: G = ( a ) G=(a) G=(a)为无限循环群,则 G G G中只有 a a a和 a − 1 a^-1 a−1俩生成元
循环群的同构:任意无限循环群和整数加群 Z \Z Z同构,任意有限 n n n阶循环群和 n n n阶剩余加群 Z n \Z_n Zn同构
也就是说任意无限循环群互相同构,任意同阶有限循环群互相同构
循环群的子群: G G G为 n n n阶循环群, d ∣ n d|n d∣n,则存在唯一一个阶为 d d d的子群(该子群也为循环群)
注意,上面的叙述就是拉格朗日定理的逆定理( G G G为 n n n阶群, m ∣ n m|n m∣n,则 G G G中一定存在 m m m元子群),这个逆定理只在循环群中成立
域 = 加法Abel群 + 去零元乘法Abel群 + 乘法分配律
常见域:有理数域 Q Q Q,实数域 R \R R,复数域 C C C
子域和扩域:子域 = 子集 + 域 ,扩域就是原来的域
例如 Q Q Q是 R \R R的子域, R \R R是 C C C的子域
子域中的零元、单位元、负元、逆元和扩域一致
子域判定定理 :子域 = 加子群 + 去零元乘子群
有限域举例:二元域 F 2 = { 0 , 1 } F_2=\{0,1\} F2={0,1}(注:由于运算可能不同, F 2 F_2 F2不一定是其他域的子域)
四元域 F 4 = 0 , 1 , x , 1 + x F_4={0,1,x,1+x} F4=0,1,x,1+x(其运算定义方法建议记下来)
剩余类域 Z / p Z \Z/p\Z Z/pZ(指模 p p p的剩余类集合)
域的运算性质:1)加法、乘法消去律成立
2)若 a b = 0 ab=0 ab=0,则 a = 0 a=0 a=0或 b = 0 b=0 b=0(这点在后面学环时很重要)
其他性质基本与我们之前学的数域运算相同,具体可以去看看PPT我懒得写了
域的特征:满足 m e = 0 me=0 me=0的 m m m中最小的正整数 p p p称为该域的特征,如果不存在这样的 m m m,则该域的特征为 0 0 0
域的特征举例: C , R , Q C,\R,Q C,R,Q的特征均为 0 0 0, F 2 F_2 F2的特征为 2 2 2, Z p \Z_p Zp的特征为 p p p
域的特征定理:域的特征是0或者一个素数
域的特征性质:(无限域) ∀ a ∈ F , a ≠ 0 , ∀ m , m a ≠ 0 \forall a\in F,a\neq 0,\forall m,ma\neq 0 ∀a∈F,a=0,∀m,ma=0,且 m m m不同时 m a ma ma也不同
(有限域) ∀ a ∈ F , a ≠ 0 , p \forall a\in F,a\neq 0,p ∀a∈F,a=0,p为 F F F的特征。则 0 , a , 2 a . . . ( p − 1 ) a 0,a,2a...(p-1)a 0,a,2a...(p−1)a这些元素互不相同
进一步, ∀ m ∈ Z \forall m\in\Z ∀m∈Z, m a = 0 ⇔ p ∣ m ma=0\Leftrightarrow p|m ma=0⇔p∣m
有限域的特征定理:有限域的特征必为素数
但是注意,无限域的特征不一定为0!
非0特征域上的二项式定理: ∀ a , b ∈ F , ( a ± b ) p = a p ± b p \forall a,b\in F,(a±b)^p=a^p±b^p ∀a,b∈F,(a±b)p=ap±bp, p ≠ 0 p\neq 0 p=0为域 F F F的特征
特别地,当域 F F F的特征 p = 2 p=2 p=2时,域上的加法和减法等价,即 ∀ a ∈ F , a = − a \forall a\in F,a=-a ∀a∈F,a=−a
该定理可以推广至任意多个元素: ( a 1 + a 2 + . . . + a m ) p = a 1 p + a 2 p + . . . + a m p (a_1+a_2+...+a_m)^p=a_1^p+a_2^p+...+a_m^p (a1+a2+...+am)p=a1p+a2p+...+amp
对 p p p的 n n n次幂同样成立: ( a ± b ) p n = a p n ± b p n (a±b)^{p^n}=a^{p^n}±b^{p^n} (a±b)pn=apn±bpn
域的同构 = 一一映射 + 两种运算均保持运算
同构的域的零元和单位元具有映射关系
同构域的重要性质:同构的域的特征相同
域的自同构:域 F F F到自身的同构
举例: F F F为一有限域,其特征为 p p p, n n n为一非负整数, ∀ a ∈ F \forall a\in F ∀a∈F,定义 f ( a ) = a p n f(a)=a^{p^n} f(a)=apn, f f f就是 F F F的一个自同构映射
这个例子告诉我们,对于有限域,我们可以写出任意多的自同构映射
映射小定理:元素个数相等的有限集合间的单射一定是双射
素子域:(对特征为 p p p的域) Π = { 0 , e , 2 e . . . ( p − 1 ) e } \Pi=\{0,e,2e...(p-1)e\} Π={0,e,2e...(p−1)e}是域 F F F的一个子域,称为 F F F的素子域,同时也是 F F F的最小子域
(对特征为 0 0 0的域) Π = { ( m e ) ( n e ) − 1 , m , n ∈ Z , n ≠ 0 } \Pi=\{(me)(ne)^{-1},m,n\in\Z,n\neq 0\} Π={(me)(ne)−1,m,n∈Z,n=0}是域 F F F的一个子域,称为 F F F的素子域,同时也是 F F F的最小子域
环 = 加法Abel群 + 乘法结合律 + 左右乘法分配律
带单位元的环 = 环 + 单位元
交换环 = 环 + 乘法交换律
常见环:整数环 Z \Z Z(带单位元、交换环), R = 2 Z R=2\Z R=2Z(没有单位元,交换环), R = 2 × 2 R=2\times 2 R=2×2实数矩阵(带单位元、非交换环)
除环 = 环 + 至少俩元素 + 单位元 + 去零元均有可逆元
除环 = 环 + 去零元乘法群(非Abel群)
零环 = { 0 } \{0\} {0}(上面除环规定至少俩元素,就是为了排除零环)
(域 = 除环 + 乘法交换律)
环中的运算规则和域中的基本相同,但环中二项式定理不再成立,因为没有交换律!
带单位元的环的性质:如果环 R R R中有单位元 e e e, ∣ R ∣ > 1 |R|>1 ∣R∣>1,则 e ≠ 0 e\neq 0 e=0
子环和扩环:子环 = 子集 + 环,扩环就是原来的环
子环的判定:子环 = 若 ∀ a , b ∈ S , a − b ∈ S , a b ∈ S \forall a,b\in S,a-b\in S,ab\in S ∀a,b∈S,a−b∈S,ab∈S
子环的奇妙性质:环 R R R有子环 S S S,则 S S S能从 R R R继承负元、交换环,但是不能继承单位元:
1) R R R有单位元, S S S可以没有单位元( R = Z , S = 2 Z R=\Z,S=2\Z R=Z,S=2Z)
2) R R R没有单位元, S S S可以有单位元( R = ( a b 0 0 ) R=\bigl(\begin{smallmatrix}a&b\\0&0\end{smallmatrix}\bigr) R=(a0b0), S = ( a 0 0 0 ) S=\bigl(\begin{smallmatrix}a&0\\0&0\end{smallmatrix}\bigr) S=(a000))
3) R R R和 S S S就算都有单位元,它们的单位元也不一定相同( R = Z / 12 Z R=\Z/12\Z R=Z/12Z(单位元为 [ 1 ] [1] [1]), S = 4 Z / 12 Z S=4\Z/12\Z S=4Z/12Z(单位元为 [ 4 ] [4] [4]))
环的同构:一一映射 + 两种运算均保持运算
同构的性质可以互相继承
环的零因子:如果在一个环里, a ≠ 0 , b ≠ 0 a\neq 0,b\neq 0 a=0,b=0,但 a b = 0 ab=0 ab=0,就称 a a a为这个环的一个左零因子, b b b为这个环的一个右零因子。左零因子和右零因子统称为零因子
无零因子环 = 环 + 乘法消去律
无零因子环的性质:所有非零元对加法的阶相等,该性质对于有零因子环不一定成立
无零因子环的特征:根据上面的性质,定义某个非零元加法的阶为该无零因子环的特征。同域的特征一样,无零因子环的特征为0或者一个素数
整环 = 无零因子 + 带单位元 + 至少俩元素 + 交换环
分式域:一个整环 D D D可以构造出一个分式域 Q Q Q:
1) D ⊂ Q D\subset Q D⊂Q
2) Q = { a b : a , b ∈ D , b ≠ 0 } Q=\{\frac{a}{b}:a,b\in D,b\neq 0\} Q={ba:a,b∈D,b=0}
其中 a b = a b − 1 \frac{a}{b}=ab^{-1} ba=ab−1
从同构意义上看,一个整环只有一个分式域
整除:对于交换环 D D D, ∀ a , b ∈ D , b ≠ 0 , ∃ c ∈ D , a = b c \forall a,b\in D,b\neq 0,\exists c\in D,a=bc ∀a,b∈D,b=0,∃c∈D,a=bc,则称 b b b整除 a a a,记为 b ∣ a b|a b∣a
此时称 b b b是 a a a 的因子, a a a是 b b b的倍元
单位:对于有单位元的交换环 D D D,如果 u ∈ D u\in D u∈D具有逆元,则称 u u u为单位
相伴元:若 b = ε a b=\varepsilon a b=εa,其中 ε \varepsilon ε为单位,则称 b b b和 a a a互为相伴元
相伴元:若 b ≠ 0 b\neq 0 b=0, a ≠ 0 a\neq 0 a=0, b ∣ a b|a b∣a和 a ∣ b a|b a∣b同时成立,则称 b b b和 a a a互为相伴元,记作 a ∼ b a\sim b a∼b
可以证明相伴是一个等价关系
单位的性质:俩单位相乘结果还是单位,单位的逆元也是单位
推论:若某个环有单位,则全体单位构成的集合在环乘法下构成一个群
平凡因子和真因子:对于元素 a a a,单位和 a a a 的相伴元叫做 a a a 的平凡因子,除去平凡因子外的其余的 a a a 的因子就叫做 a a a 的真因子
真因子判定:( a ≠ 0 a\neq 0 a=0有真因子) = ( a = b c a=bc a=bc,且 b b b, c c c都不是单位)
不可约元:有单位元交换环 D D D中,一个非0非单位的元素 a a a没有真因子,就称 a a a为不可约元
素元:有单位元交换环 D D D中,一个非0非单位的元素 p p p满足 p ∣ a b ⇒ p ∣ a p|ab\Rightarrow p|a p∣ab⇒p∣a或 p ∣ b p|b p∣b,就称 p p p为素元
对于一般的有单位元交换环,不可约元和素元没什么关系
例如 Z 6 \Z_6 Z6中, [ 3 ] [3] [3]是素元,但不是不可约元( [ 3 ] = [ 3 ] [ 3 ] [3]=[3][3] [3]=[3][3])
又例如 R = Z [ − 5 ] = { a + b − 5 : a , b ∈ Z } R=\Z[\sqrt{-5}]=\{a+b\sqrt{-5}:a,b\in \Z\} R=Z[−5]={a+b−5:a,b∈Z}中, 3 3 3是不可约元,但不是素元
( 3 ∣ 9 = ( 2 + − 5 ) ( 2 − − 5 ) ) 3|9=(2+\sqrt{-5})(2-\sqrt{-5})) 3∣9=(2+−5)(2−−5)),但是在 R R R中 3 3 3不整除 2 ± − 5 2±\sqrt{-5} 2±−5)
但是,对环加些条件,可以让素元和不可约元贴贴~
整环中,素元一定是不可约元(不可约元仍然不一定是素元)
不可约元性质:不可约元的相伴元也是不可约元
素元性质:素元的相伴元也是素元
整环中的唯一分解:如果一个整环 D D D中的一个元素 a a a满足以下条件:
1) a = p 1 p 2 . . . p r a=p_1p_2...p_r a=p1p2...pr( p i p_i pi是不可约元)
2)若同时有 a = q 1 q 2 . . . q s a=q_1q_2...q_s a=q1q2...qs( q i q_i qi是不可约元)
有 r = s r=s r=s,且可以通过适当调整 q i q_i qi的次序,使得 q i = ε p i q_i=\varepsilon p_i qi=εpi( ε \varepsilon ε为单位),则称 a a a在 D D D里有唯一分解
整环中的唯一分解只对非0非单位元素讨论
整环中的最大公因子:对于整环 D D D,设 a , b ∈ D a,b\in D a,b∈D,满足:
(1) d ∣ a , d ∣ b d|a,d|b d∣a,d∣b
(2)若存在 d ′ ∈ D , d ′ ∣ a , d ′ ∣ b d^{'}\in D,d^{'}|a,d^{'}|b d′∈D,d′∣a,d′∣b,则有 d ′ ∣ d d{'}|d d′∣d
则称 d d d是 a a a和 b b b的最大公因子,记为 ( a , b ) (a,b) (a,b)
注意,这里的最大公因子是通过整除性定义的,因此有一些奇妙的性质:
整环中的最大公因子的性质:(1)若 d d d为 a a a和 b b b的最大公因子,则 d d d的相伴元也是 a a a和 b b b 的最大公因子,不与 d d d相伴的就不是 a a a和 b b b的最大公因子
(2)最大公因子可能不存在。例如 R = Z [ − 5 ] R=\Z[\sqrt{-5}] R=Z[−5]中, 6 6 6和 2 ( 1 + − 5 ) 2(1+\sqrt{-5}) 2(1+−5)之间就没有最大公因子
唯一分解环 = 整环 + 所有非0非单位元素均唯一分解
唯一分解环中,素元和不可约元等价,且最大公因子必存在
欧氏环 = 唯一分解环 + 欧氏除法
咕咕咕