今儿个咱聊聊TensorFlow,这玩意儿可是构建强大AI模型的一大利器。深度学习听起来高大上,其实掰开了揉碎了,也没那么难。跟着猫哥走,保证你入门!
前排提示,文末有大模型AGI-CSDN独家资料包哦!
##TensorFlow是个啥?
TensorFlow,谷歌出品,开源的,专门搞机器学习和深度学习的。简单来说,它就像个超级计算器,能处理巨量的数据,帮你训练AI模型。想象一下,你训练一只猫认图,得给它看成千上万张图片,TensorFlow就帮你快速处理这些图片,让你的猫(AI模型)快速学会认东西。
##数据类型,跑不掉
在TensorFlow里,数据都用张量(Tensor)表示,可以理解为多维数组。一维的叫向量,二维的叫矩阵,三维及以上的就统称张量。别被这名字吓到,其实就是一堆数字排排坐,分好组。
importtensorflowastf
#创建一个常量张量
hello=tf.constant('Hello,TensorFlow!')
print(hello)#输出:tf.Tensor(b'Hello,TensorFlow!',shape=(),dtype=string)
#创建一个变量张量
a=tf.Variable(3,dtype=tf.int32)
b=tf.Variable(4,dtype=tf.int32)
c=a+b
print(c)#输出:tf.Tensor(7,shape=(),dtype=int32)
你看,tf.constant
创建的是常量,tf.Variable
创建的是变量。变量的值可以改,常量的就不行啦。
##计算图,走一波
TensorFlow用计算图来表示计算过程。每个节点代表一个操作,边表示数据流动。就像做菜,切菜、炒菜、装盘,一步步来。
#定义两个输入节点
x=tf.constant(2.0)
y=tf.constant(3.0)
#定义加法操作
z=x+y
#执行计算图
print(z)#输出:tf.Tensor(5.0,shape=(),dtype=float32)
这段代码,x
、y
是输入,z
是输出,加法就是操作。是不是挺像流水线的?
##训练模型,有诀窍
训练AI模型,就像教小猫认东西。给它看图片,告诉它这是啥,反复训练,它就记住了。这个过程叫监督学习。
#简化的线性回归模型示例
importtensorflowastf
importnumpyasnp
#创建一些训练数据
X=np.array([1,2,3,4],dtype=float)
Y=np.array([2,4,6,8],dtype=float)
#创建模型参数(待训练)
W=tf.Variable(0.0)
b=tf.Variable(0.0)
#定义模型
defmodel(x):
returnW*x+b
#定义损失函数(均方误差)
defloss(y_true,y_pred):
returntf.reduce_mean(tf.square(y_true-y_pred))
#定义优化器
optimizer=tf.optimizers.SGD(learning_rate=0.01)
#训练循环
forepochinrange(100):#训练100轮
withtf.GradientTape()astape:
y_pred=model(X)
current_loss=loss(Y,y_pred)
#计算梯度
gradients=tape.gradient(current_loss,[W,b])
#更新模型参数
optimizer.apply_gradients(zip(gradients,[W,b]))
print("训练后的W:",W.numpy())#接近2
print("训练后的b:",b.numpy())#接近0
温馨提示:learning_rate
学习率,就像小猫学习的速度,太快容易学错,太慢又学得慢。
##Keras,更简单
Keras是TensorFlow的高层API,用起来更简单。就像组装积木,搭积木比自己做积木简单多了吧?
importtensorflowastf
#定义一个简单的顺序模型
model=tf.keras.Sequential([
tf.keras.layers.Dense(10,activation='relu',input_shape=(100,)),#输入层,100个神经元
tf.keras.layers.Dense(1,activation='sigmoid')#输出层,1个神经元
])
#编译模型
model.compile(optimizer='adam',#优化器
loss='binary_crossentropy',#损失函数
metrics=['accuracy'])#评估指标
#虚拟训练数据
x_train=tf.random.normal((1000,100))#1000个样本,每个样本100个特征
y_train=tf.random.uniform((1000,1),minval=0,maxval=2,dtype=tf.int64)
#训练模型
model.fit(x_train,y_train,epochs=10,batch_size=32)#训练10轮,每批32个样本
##实战一下
用TensorFlow做个手写数字识别,MNIST数据集很经典。
importtensorflowastf
#加载MNIST数据集
mnist=tf.keras.datasets.mnist
(x_train,y_train),(x_test,y_test)=mnist.load_data()
#归一化数据
x_train,x_test=x_train/255.0,x_test/255.0
#构建模型
model=tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28,28)),
tf.keras.layers.Dense(128,activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10,activation='softmax')
])
#编译模型
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
#训练模型
model.fit(x_train,y_train,epochs=5)
#评估模型
model.evaluate(x_test,y_test,verbose=2)
这只是一个简单的例子,还有很多高级的玩法,慢慢探索吧!
今儿个就到这儿,TensorFlow博大精深,咱慢慢学,不着急!
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓