- 博客(1732)
- 收藏
- 关注
原创 大模型原理解析(非常详细)零基础入门到精通,收藏这一篇就够了
近年来,随着计算机技术和大数据的快速发展,深度学习在各个领域取得了显著成果,尤其是大模型的出现,进一步提升了模型性能。大模型通常指具有数千万甚至数亿参数的深度学习模型,其核心原理是基于深度学习的神经网络,通过大量数据和计算资源进行训练,以优化模型参数,提升任务表现。大模型的特点包括参数数量庞大、训练数据量大、计算资源需求高等,广泛应用于自然语言处理、图像生成等领域。 大模型的架构主要基于Transformer结构,其独特的注意力机制(Attention)使其在处理长序列任务时表现优异。根据架构的不同,大模型
2025-05-15 17:11:12
979
原创 将大模型与小模型结合的8种常用策略分享,附17篇案例论文和代码
近年来,大模型研究逐渐转向“降耗增效”,通过结合高性能、低耗资的小模型,提升计算和内存利用效率,满足特定场景需求,降低成本并增强系统性能。常用的结合策略包括模型压缩(如蒸馏、剪枝)、提示语压缩、联合推理、迁移学习、权值共享和集成学习等。模型压缩通过知识蒸馏、轻量化架构、剪枝和量化等方法,将复杂大模型转化为高效小模型。知识蒸馏通过让小模型拟合大模型的输出,模拟其性能。相关研究如《Distilling the Knowledge in a Neural Network》和《Knowledge Distillat
2025-05-15 16:44:16
770
原创 一文了解大模型的主要应用领域和就业岗位
大模型在多个领域展现出广泛的应用潜力。在自然语言处理(NLP)中,大模型可用于文本生成、翻译、问答系统和情感分析;在计算机视觉(CV)中,应用于图像分类、目标检测、图像生成和人脸识别;在自动驾驶领域,大模型支持物体检测、路径规划和决策制定;在金融领域,用于市场预测、风险评估和智能投顾;在医疗领域,辅助医疗影像诊断和数据分析;在教育领域,提供个性化学习推荐和智能辅导;在城市治理和智能制造中,大模型也展现出提升效率和优化决策的潜力。此外,AI大模型开发工程师等岗位成为新兴就业方向,推动技术发展。
2025-05-15 15:26:15
1070
原创 终极指南:国内大模型公司面经与感受,10万月薪Offer攻略
2024年三月前后,大模型在国内迅速走红,笔者在此期间面试了多家公司,包括大厂和初创企业。面试经历中,智元机器人(Agibot)由稚晖君亲自面试,主要涉及Transformer和BERT/GPT等技术问题,但最终未通过。面壁科技/面壁智能则提供了offer,面试内容涵盖大模型训练和Transformer,团队年轻且背景强大。光年之外和360则因简历问题被拒。北京智源人工智能研究院的面试过程较为复杂,涉及多个团队,但最终未获回复。Minimax则提供了口头offer,面试轮次较多。整体来看,大模型领域的面试注
2025-05-13 15:36:30
912
原创 2025普通人转行,推荐一个好就业的方向——人工智能大模型
2024年高校毕业生预计达1179万人,就业压力持续加大。为应对“就业难”问题,选择前景良好的专业至关重要。人工智能作为当前热门领域,其大模型技术在各行业的应用日益广泛,预计到2030年人才缺口将达500万。相关岗位如算法工程师、数据挖掘工程师等薪酬优厚,发展前景广阔。文章还提供了大模型学习资料包,包括学习路线、实战案例、视频和PDF合集,帮助零基础学习者快速入门并规划职业方向。
2025-05-13 15:10:21
1373
原创 大模型实操 ——LoRA、QLoRA微调大模型实战技巧分享
本文介绍了LoRA(低秩自适应)技术在大语言模型微调中的应用。LoRA通过在原有模型基础上添加可拆卸的插件,显著降低了微调大模型的计算和内存成本。文章详细解释了LoRA的工作原理,即通过低秩矩阵分解减少参数更新量,从而节省资源。此外,还介绍了QLoRA技术,通过量化进一步减少内存占用,尽管训练时间有所增加,但模型性能几乎不受影响。文章还讨论了学习率调度器在优化模型收敛中的作用,并比较了SGD与Adam优化器在训练大模型时的内存占用差异。总体而言,LoRA和QLoRA是高效微调大语言模型的有效方法,尤其适合资
2025-05-13 14:50:09
728
原创 大语言模型微调实践——LoRA 微调细节
本文介绍了大语言模型微调技术中的LoRA(Low-Rank Adaptation)方法,并以StarCoder模型为例,详细阐述了LoRA的微调原理与实践。LoRA通过低秩分解技术,在预训练模型旁增加旁路矩阵,仅训练少量参数即可实现高效微调,显著减少计算资源需求。文章还探讨了LoRA的细节,如参数选择、Rank取值、alpha参数及初始化方法,并提供了StarCoder微调的环境配置和主要依赖包版本。LoRA方法在代码生成等任务中表现出色,为自然语言处理领域提供了更精细、个性化的解决方案。
2025-05-13 14:28:48
850
原创 从训练到推理,AI 大模型发展有哪五大趋势?
电子发烧友网报道(文/章鹰)2024年两会召开后,两会报告把加快发展新质生产力列为十大任务举措之首。新质生产力的核心是用新技术促进产业高端化、智能化和绿色化。ICT产业是发展新质生产力的核心支撑要求,ICT产业正在进入AI无处不在的大转型阶段。纵观全球,2024年中国GDP增长预期5%,全球平均增长率达到2.6%,美国预期增长2%,印度最为乐观预期今年的GDP增长达到6.2%。
2025-05-12 15:44:27
989
原创 大模型部署的问题,以及企业级大模型的分布式部署方案
大模型的分布式训练和部署是当前人工智能领域的重要课题。与单机训练不同,企业级大模型通常涉及数十亿甚至数万亿参数,单机无法满足其计算和存储需求。分布式训练和部署通过数据并行、模型并行、流水线并行和混合并行等方式,将模型分布到多台机器上进行训练和推理,以应对大规模参数和用户访问的挑战。常用的工具包括TensorFlow、PyTorch、Horovod和DeepSpeed等。此外,大模型的适配问题也需要解决,如将开源模型适配到特定框架中。对于初学者,系统学习大模型的分布式训练和部署是掌握企业级应用的关键。文末提供
2025-05-12 14:53:55
603
原创 一文读懂RAG和LLM微调,教你结合业务场景落地LLM应用
在面对大型语言模型(LLM)应用性能提升时,开发者常面临选择检索增强生成(RAG)还是模型微调的难题。RAG通过整合外部数据源来增强模型生成能力,适合需要动态更新和外部知识支持的场景,且能有效减少模型幻觉,提高输出的准确性和可解释性。而微调则通过特定数据集训练模型,使其更适应特定任务或领域,适合需要定制化风格或领域知识的应用,但可能面临数据更新和过拟合的挑战。两者并非互斥,而是根据应用需求可独立或结合使用。选择时需考虑数据动态性、训练数据量、可解释性等因素,以确保模型性能和应用效果的最优化。
2025-05-12 14:25:36
912
原创 RAG+AI工作流+Agent:LLM框架该如何选择,全面对比MaxKB、Dify、FastGPT、RagFlow、Anything-LLM,以及更多推荐
开箱即用:支持直接上传文档、自动爬取在线文档,支持文本自动拆分、向量化、RAG(检索增强生成),智能问答交互体验好;无缝嵌入:支持零编码快速嵌入到第三方业务系统,让已有系统快速拥有智能问答能力,提高用户满意度;灵活编排:内置强大的工作流引擎,支持编排 AI 工作流程,满足复杂业务场景下的需求;模型中立。
2025-05-10 21:57:20
590
原创 大模型应用框架解析:RAG、Agent、微调、提示词工程究竟是什么?
RAG(Retrieval-Augmented Generation)是一种基于检索增强的生成技术,通过从外部知识库中检索相关信息,提升生成文本的准确性和相关性。其特点包括知识更新成本低、提高答案准确性和增强可解释性,适用于知识密集型任务、AI文档问答等场景。然而,RAG依赖外部知识库的质量和规模,且检索模块的准确性直接影响生成效果。未来,RAG将在企业信息库建设、智能客服等领域有更广泛应用。 Agent(智能体)则赋予软件实体自主性和交互性,使其能够智能响应环境变化和用户需求。Agent具备自主性、反应性
2025-05-10 21:28:53
863
原创 使用RAG技术构建企业级文档问答系统之基础流程
本文介绍了检索增强生成(RAG)技术的基础流程,该技术结合大语言模型与文档检索,能够根据用户问题从文档中提取相关文本片段,并生成回答。RAG解决了传统大语言模型在知识陈旧、幻觉和无法利用私有知识库等问题。其流程包括文档加载、切分、向量化和存储,最终通过向量相似度检索相关文本并生成回答。文章还提供了环境准备和代码实现的详细步骤,包括安装Python包、下载模型和加载数据集,帮助读者构建企业级文档问答系统。
2025-05-10 15:16:59
992
原创 LangChain RAG入门教程:构建基于私有文档的智能问答助手
在深入技术实现前,需要理解RAG技术的核心价值。传统语言模型如GPT-4尽管功能强大,但其知识库受限于训练数据,无法有效访问新增信息或特定领域文档。检索系统:从文档集合中精确定位相关信息生成机制:基于检索到的上下文信息生成准确、相关的响应这种结构设计的优势在于能够构建一个基于特定知识库的AI问答系统,有效降低了幻觉(hallucination)现象,显著提升了回答的事实准确性。通过本文所述方法,已成功构建了一个能够基于特定文档集合回答问题的完整RAG系统。
2025-05-08 15:22:25
964
原创 RAG 入门指南:从零开始构建一个 RAG 系统
在开始之前,我还是打算再次简要的介绍一下 RAG。在 Meta 的官方 Blog 上有这样一段话:这段话主要讲述了一个新的模型架构,也就是RAG (检索增强生成)的重要性和优势。可以概括为以下几点:1. 构建一个能够进行研究和上下文分析的模型虽然更具挑战性,但对未来的技术进步非常关键;2. 通过在知识密集的下游任务上微调,RAG 可以实现最先进的结果,比现有的最大的预训练序列到序列语言模型还要好;3. 与传统的预训练模型不同,RAG 的内部知识可以轻松地动态更改或补充。
2025-05-08 14:53:15
1057
原创 LlamaIndex入门指南:构建私有知识库的保姆级教程
在大语言模型(LLM)时代,如何让通用模型理解私有数据并生成精准回答,是开发者面临的核心挑战。(原GPT Index)应运而生,它作为连接LLM与私有数据的桥梁,通过检索增强生成(RAG技术,将外部知识库、结构化数据与模型的生成能力深度融合,让AI真正“读懂”你的专属信息。前排提示,文末有大模型AGI-CSDN独家资料包哦!其核心价值在于:支持从PDF、数据库、API等100+数据源(如企业文档、医疗报告)提取信息,构建统一索引;
2025-05-08 14:22:40
996
原创 一文读懂RAGFlow:从 0 到 1教你搭建RAG知识库
RAGFlow是一种融合了数据检索与生成式模型的新型系统架构,其核心思想在于将大规模检索系统与先进的生成式模型(如Transformer、GPT系列)相结合,从而在回答查询时既能利用海量数据的知识库,又能生成符合上下文语义的自然语言回复。该系统主要包含两个关键模块:数据检索模块和生成模块。数据检索模块负责在海量数据中快速定位相关信息,而生成模块则基于检索结果生成高质量的回答或文本内容。
2025-05-08 13:58:01
1253
原创 使用LangChain简单搭建自己的RAG知识库
是一种结合了检索和生成的混合式深度学习模型,常用于处理复杂的自然语言处理任务。RAG模型通过将外部知识库中的信息与生成模型结合在一起,可以提供更准确和上下文相关的答案。检索模块:负责从预先建立的知识库中检索与输入问题最相关的文档或信息片段。这通常通过向量检索技术实现,向量检索能够支持语义匹配,而不仅仅是关键词匹配,从而提高了检索的准确性。生成模块:接收检索到的内容并生成最终的自然语言响应。这个模块通常基于大型生成模型(如 GPT-4),能够理解和生成复杂的自然语言。
2025-05-07 16:05:10
931
原创 【企业级本地知识库搭建指南】:基于大模型搭建智能本地知识库
基于RAG与LLM的知识库作为目前最有潜力的企业端大模型应用之一,从技术角度可以看到,建设方案已经完备;从业务角度,最终的应用效果和业务价值还需要观察,并通过业务侧的反馈不断地促进建设方案的进一步优化,比如增加对多模态知识的处理能力等。让我们共同期待这类应用普及那一天的到来。读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。
2025-05-07 15:20:51
1112
原创 5分钟零成本实现本地AI知识库搭建
你一定经历过各种通用大模型一本正经胡说八道的时候吧,AI一通丝滑输出让人真假难辨,防不胜防。这种情况被称为AI幻觉。大模型产生幻觉不幸“翻车”的原因很大程度上是“先天不足”,例如训练时来自特定领域的训练数据就比较缺失或存在偏差等。对于企业,AI的幻觉已经成为阻碍其落地应用的严重缺陷。我们自然想让一些企业内部私有数据也进入到大模型推理分析的过程,让其更好服务于日常业务,但出于信息安全等考量,私有数据显然不可随意上传到第三方平台。
2025-05-07 14:47:10
835
原创 本地知识库如何搭建?大模型知识库搭建教程
大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。如果你是零基础小白,想快速入门大模型是可以考虑的。
2025-05-06 17:05:44
831
原创 小白保姆级教学:如何高效搭建ai知识库
在人工智能(ai)日新月异的今天,拥有一个高效且全面的知识库是每个企业重要的一部分。对于新手来说,搭建ai知识库可能听起来有些复杂,毫无头绪,但是别担心,这篇小白保姆级教学将带你一步步了解如何高效搭建AI知识库。
2025-05-06 16:37:36
821
原创 小白保姆级教学:如何高效搭建ai知识库
在人工智能(ai)日新月异的今天,拥有一个高效且全面的知识库是每个企业重要的一部分。对于新手来说,搭建ai知识库可能听起来有些复杂,毫无头绪,但是别担心,这篇小白保姆级教学将带你一步步了解如何高效搭建AI知识库。
2025-05-06 15:29:54
919
原创 20道大模型经典问题及答案:助你成功通过面试!
大型语言模型(LLM)是一种通过大量文本材料训练的人工智能系统,能够像人类一样理解和生成语言。通过使用机器学习技术识别训练数据中的模式和关联,这些模型能够提供逻辑上和上下文上适当的语言输出。
2025-04-28 16:38:00
780
原创 一文搞定面试准备!2025年大模型最新最全面试题,助你吊打面试官!
注意力机制是一种模拟人类注意力分配过程的模型,它能够在处理大量信息时,选择性地关注对任务更重要的信息,忽略无关信息。在自然语言处理中,注意力机制常用于机器翻译、文本摘要、问答系统等任务中,帮助模型捕捉输入序列中的关键信息。在计算机视觉中,注意力机制也用于图像识别、目标检测等任务,使模型能够关注图像中的关键区域。
2025-04-28 16:06:05
987
原创 企业搭建知识库,为什么倾向于私有化部署
在当今信息爆炸的时代,随着企业的发展扩大,企业内部知识分散在每个员工的电脑上,信息冗余,存在多份数据,难以做到统一;文档涉密权限问题管理难度大、监控成本高、管理难度大。企业面临着处理和管理大量知识和信息的挑战。为了更好地组织、共享和管理企业内部知识,许多企业开始搭建内部知识库。知识是企业的财富,知识库作为知识管理的核心环节,对于企业的发展也至关重要。在搭建知识库的过程中,越来越多的企业开始选择私有化部署的方式。那么,为什么企业倾向于私有化部署呢?
2025-04-28 15:50:16
647
原创 扣子智能体小白入门指南:一文带你入门字节智能体扣子coze!!!
在扣子智能体的学习过程中,丰富的学习资源能够帮助用户更好地掌握和运用这一强大的工具。以下是一些推荐的学习资源:•。
2025-04-27 14:52:31
1623
原创 超详细!!一文彻底搞懂大模型 - Dify(Agent + RAG)
该平台结合了后端即服务(Backend as Service, BaaS)和LLMOps的理念,为开发者提供了。
2025-04-27 14:31:49
853
原创 Cherry Studio+DeepSeek R1 + 嵌入模型:企业与个人都能用的知识库(附详细教程)
Cherry Studio 是一款功能强大且灵活的桌面客户端工具,支持多模型服务,适用于 Windows、Mac 和 Linux 系统。它不仅集成了主流的 LLM 云服务和 AI Web 服务,还支持本地模型运行。它的核心亮点包括:完整的 Markdown 渲染文件上传与多模态对话智能体创建与管理友好的界面设计与灵活的主题选项更重要的是,Cherry Studio 能通过可视化界面和远程 API 接口调用各类模型,大幅降低对本地硬件的依赖,为个人和企业提供了一个高效的解决方案。
2025-04-27 14:14:30
1117
原创 私有化部署大模型最佳解决方案 Ollama (8B)模型
企业考虑成本和数据隐私问题,会特别希望能在企业内部部署一套大模型,在企业内部直接调用,这样就能成本可控,数据也不会泄露,所以开源大模型是非常有前景的,目前来说Meta开源的Llama3是开源大模型中性能表现最好的,所以这节课先带大家来尝试使用Ollama来部署Llama3和nomic模型。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;这样,ollama的服务端就启动了,就可以接收模型的请求调用了,不过可能ollama部署了多个模型,所以请求调用时需要指定想要调用的是哪个模型.
2025-04-27 13:55:03
955
原创 带你快速了解大模型微调原理
大模型微调(Fine-tuning)是指在已经预训练好的大型语言模型基础上,使用特定的数据集进行进一步的训练,以使模型适应特定任务或领域。我们所说的“大模型”这个词:“大”是指用于训练模型的参数非常多,多达千亿、万亿;而“模型”指的就是上述公式中的矩阵W。在这里,矩阵W就是通过机器学习,得出的用来将X序列,转换成Y序列的权重参数组成的矩阵。需要特别说明:这里为了方便理解,做了大量的简化。在实际的模型中,会有多个用于不同目的的权重参数矩阵,也还有一些其它参数。
2025-04-26 09:15:00
758
原创 50+个AI大模型在不同领域的应用案例,收藏这一篇就够了!
随着大模型的横空出世,AI大模型在不同领域有着广泛的应用,包括内容生成、聊天机器人、智能助手等方向。这些大模型在ToB、ToG、ToC等不同客户维度下都有着各自的应用场景和挑战。微调是AI大模型发展的关键,商业模式上也出现了行业化应用与模型即服务(MaaS)的趋势。
2025-04-26 09:00:00
1687
原创 API调用大模型如此方便,为何企业还要私有化部署大模型?
直接通过网页API调用大模型确实方便快捷,尤其对于那些追求效率、希望快速集成AI功能的项目来说,云端服务是个不错的选择。但为啥有些企业和个人还琢磨着要把这些大模型搬到自家服务器上,搞个本地部署呢?想象一下,如果你的公司处理的是客户敏感信息或者商业机密,直接把数据上传到云端处理,总有点担心信息外泄吧。本地部署就能让数据在内部流转,相当于给敏感信息加了个保险箱。从国家层面来说,为什么国外ChatGPT这么厉害了,国家还要花大力气搞国产大模型?因为大模型技术的飞速发展,会让其成为了。
2025-04-25 15:38:56
956
原创 小白也可以部署私有化大模型知识库,非常详细!
更多实操内容,期待后续陆续输出,欢迎大家关注交流!!读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓。
2025-04-25 15:20:00
1059
原创 一文学会基于LangChain开发大模型RAG知识问答应用
RAG全称是Retrieval-Augmented Generation,即检索增强生成。通俗来讲,就是在用户提的问题的基础上,引入相关资料信息,把“问题+相关资料” 一起给大模型,让大模型在参考资料的约束或提示下回答问题而不是随意发挥,从而期望大模型生成质量更高、更准确的答案,改善大模型”幻觉“、训练数据过时、 知识范围有限等带来的负面问题。在涉及到专业领域知识或企业内部知识的应用场景中,这项技术发挥着重要作用。相比于,RAG时间成本、经济成本和技术难度都更低。
2025-04-25 14:57:30
763
原创 AI大模型RAG实战教程,从入门到精通,看这一篇就够了!
RAG(Retrieval Augmented Generation, 检索增强生成)是一种技术框架,其核心在于当 LLM 面对解答问题或创作文本任务时,首先会在大规模文档库中搜索并筛选出与任务紧密相关的素材,继而依据这些素材精准指导后续的回答生成或文本构造过程,旨在通过此种方式提升模型输出的准确性和可靠性。RAG 技术架构图介绍:富文本 主要存储于 txt 文件中,因为排版比较整洁,所以获取方式比较简单实战技巧:【版面分析——富文本txt读取】
2025-04-25 14:25:22
939
原创 小白学RAG:大模型 RAG 技术实践总结
RAG (Retrieval-Augmented Generation) 是一种结合信息检索与生成模型的技术。其主要目标是通过检索大量信息并使用生成模型进行处理,从而提供更加准确和丰富的回答。RAG技术在处理大规模文本数据时表现尤为出色,能够从海量信息中迅速找到相关内容并生成合适的响应。智谱RAG方案具体设计了如何将RAG技术应用到智能客服领域。方案包括以下几个关键环节:信息检索模块:从预先构建的知识库中快速找到与用户问题相关的内容。
2025-04-24 16:13:24
1014
原创 大模型面试八股含答案,非常详细收藏我这一篇就够了
前排提示,文末有大模型AGI-CSDN独家资料包哦!a.Self-Attention的表达式b.为什么上面那个公式要对QK进行scalingscaling后进行softmax操作可以使得输入的数据的分布变得更好,你可以想象下softmax的公式,数值会进入敏感区间,防止梯度消失,让模型能够更容易训练。c.self-attention一定要这样表达吗?不一定,只要可以建模相关性就可以。当然,最好是能够高速计算(矩阵乘法),并且表达能力强(query可以主动去关注到其他的key并在value上进行强化,并且忽略
2025-04-24 15:45:08
924
原创 这是我见过 AI 大模型面试题超全汇总了!
节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。本文梳理了 AI 大模型开发技术的面试之道,从 AI 大模型基础面、AI 大模型进阶面、LangChain 开发框架面、向量数据库面等不同知识维度,试图找到一个共同的面试速成模式,希望对 IT 同学有所助益。
2025-04-24 15:33:27
832
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人