- 博客(1650)
- 收藏
- 关注
原创 程序员逆袭!Java转AI大模型,轻松实现年薪百万
随着技术的不断进步,人工智能(AI)大模型已经成为当今科技领域最热门的话题之一。许多开发者开始考虑从传统的软件开发领域,如Java,转向人工智能领域,今天小编和大家一起来探讨Java开发者是否可以转型到人工智能大模型,转型的优势,薪资对比,以及转型所需的知识和学习路线等。Java作为一种广泛使用的编程语言,拥有强大的生态系统和丰富的库支持。许多人工智能大模型框架和库,如Apache Mahout和Deeplearning4j,都是基于Java开发的。因此,Java开发者具备转型到人工智能大模型领域的基础。
2025-03-18 11:28:05
912
原创 普通程序员如何入手学习大模型(LLM)附学习路线和资源教程
在人工智能(AI)飞速发展的今天,掌握AI技术已经成为了许多高校研究者和职场人士的必备技能。从深度学习到强化学习,从大模型训练到实际应用,AI技术的广度和深度不断拓展。作为一名AI学习者,面对浩瀚的知识海洋,如何有条不紊地学习并应用这些技术呢?别担心,今天我为你。深入理解线性代数、概率论和统计学、微积分等基础数学知识。熟练掌握至少一种编程语言,推荐Python,因为它是数据科学和机器学习领域的主流语言。学习机器学习的基本概念、算法和模型,如线性回归、决策树、随机森林、支持向量机等。
2025-03-18 11:26:46
598
原创 程序员AI大模型转型指南:从入门到精通,一篇收藏,全面掌握!
在人工智能(AI)迅速发展的背景下,从传统的编程领域如Java程序员转向大模型开发是一个既充满挑战也充满机遇的过程。对于 Java 程序员来说,这也是一个实现职业转型、提升薪资待遇的绝佳机遇。前排提示,文末有大模型AGI-CSDN独家资料包哦!一、明确大模型概念简单来说,大模型就是具有大量参数和强大计算能力的人工智能模型,可以处理各种复杂的任务,如自然语言处理、图像识别等。想象一下,大模型就像是一个超级聪明的大脑,能够理解和处理各种信息。二、转行步骤第一步:学习基础知识。
2025-03-18 11:25:25
548
原创 程序员转行难题:为何如此艰难?大模型领域的新机遇与挑战
尽管我在“[大龄程序员的未来在何方]”这篇文章里比较乐观地介绍了程序员保持竞争力的几个方向,但现实依然是残酷的:很多人将不得不离开软件开发工作,转型去从事其他职业。当你要这么做时,就会感慨:想不到一切竟如此艰难!你不禁会想起李白老先生的诗:噫吁嚱,危乎高哉!蜀道之难,难于上青天!那么,为什么会这么难呢?真有这么难吗?然后我们再来看看,在千难万难之中,怎样找到正确的突破姿势。
2025-03-18 11:23:54
500
原创 2025年程序员转行什么方向更有前景?强烈推荐这几个
对于程序员转行方向的推荐,可以基于当前的技术趋势、市场需求以及程序员的个人技能和兴趣来综合考虑。
2025-03-18 10:38:55
939
原创 一文了解什么是大模型?到底大模型有什么用呢?
这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。大模型在各种领域都有广泛的应用,包括自然语言处理、计算机视觉、语音识别和推荐系统等。大模型通过训练海量数据来学习复杂的模式和特征,具有更强大的泛化能力,可以对未见过的数据做出准确的预测。
2025-03-17 21:16:38
644
原创 企业构建AI大模型应用的步骤流程与关键问题解析
构建企业级AI大模型驱动的应用系统是一项跨越技术与业务边界的综合性任务,它不仅考验着企业在业务领域知识的深度,也挑战着企业基于AI大模型构建应用的技术高度。这一过程要求业务专家与AI大模型专家紧密协作,共同确保通过AI大模型的赋能,实现业务价值的倍增效应。基于实践经验总结,可以系统化地将AI大模型应用的构建流程划分为五个核心步骤:1)需求场景的精确定义、2)大模型的科学选型、3)大模型性能效果的强化调优、4)大模型的部署与运行维护,以及5)AI应用的无缝集成。
2025-03-17 21:14:28
889
原创 企业该如何巧妙落地大模型?这里有10大指南
挑战与机会并存,挑战越大,机会越大,收益也就越大。作为数智时代的经营者,千万不要顽固不化,更不要畏首畏尾,因噎废食,而要积极拥抱变化,快速重塑认知,持续优化思路,带着你的团队,采用“
2025-03-17 21:13:03
838
原创 企业AI大模型私有化部署解决方案
在解决方案上,建议企业建立专门的AI服务器集群,配置高性能计算资源,实现大规模模型训练和推理任务。为了实施严格的数据安全,需要提供安全隔离和访问控制的措施,以防止数据泄露或非法获取。在部署流程上,包括环境搭建、数据准备、模型训练、模型优化和推理部署等多个步骤。每个步骤都需要严格的操作和测试,以确保最终部署的模型能够稳定运行并达到预期的性能指标。在报价方面,需要根据具体项目需求的特点进行定价。此外,还需要考虑培训和技术支持等增值服务,以满足企业的各种需求。
2025-03-17 21:11:35
795
原创 独家发布!全新大模型LLM学习路径指南,非常详细收藏我这一篇就够了
ChatGPT的出现在全球掀起了AI大模型的浪潮,2023年可以被称为AI元年,AI大模型以一种野蛮的方式,闯入你我的生活之中。从问答对话到辅助编程,从图画解析到自主创作,AI所展现出来的能力,超出了多数人的预料,让不少人惊呼:“未来是属于AI的”。AI大模型——成为互联网从业者必备技能。
2025-03-14 16:25:42
739
原创 Java开发者也能看懂的大模型应用开发实践!!!
做AI大模型应用的开发其实Java也能写,那么本文就一个Java开发者的立场,构建实现一个最基础的大模型应用系统。前排提示,文末有大模型AGI-CSDN独家资料包哦!让大模型理解文本(知识库)内容,基于知识库范围内的内容进行回答对话而基于知识库的回答会帮助我们解决哪些问题呢?✅ 节省大模型训练成本:我们知道ChatGPT的知识内容停留在2021年,最新的知识它并不知道,而检索增强生成则可以解决大模型无法快速学习的问题,训练大模型代价是非常昂贵的,不仅仅只是金钱,还包括时间,随着模型的参数大小成本成正相关。
2025-03-14 16:16:24
872
原创 企业如何训练自己的专属大模型?
时至今日,已经成为未来发展的关键。国内外科技企业纷纷开始自主研发专属大模型。大语言模型是什么?它是一种自主学习的算法,具有总结、翻译、生成文本等各个功能,可以在摆脱人为控制的情况下,自主创作文案内容。相较于传统的算法模型,大语言模型更倾向于利用学习掌握一个系统化的知识,并将其应用在各个工作任务中,最大程度的发挥其效益。如何将大语言模型应用到各行各业中?答案便是构建领域大模型。领域大模型是指大语言模型在企业的应用中,可以辅助进行领域数据标注和模型微调。
2025-03-14 15:54:39
708
原创 自然语言处理Transformer模型最详细讲解(图解版)
近几年NLP较为流行的两大模型分别为Transformer和Bert,其中Transformer由论文《Attention is All You Need》提出。该模型由谷歌团队开发,Transformer是不同与传统RNN和CNN两大主流结构,它的内部是采用自注意力机制模块。前排提示,文末有大模型AGI-CSDN独家资料包哦!该模型在WMT 2014英语到法语的翻译任务中达到了28.4BLEU,Transformer具有良好的并行性,能够很多地推广到其它任务中。
2025-03-14 15:50:17
1035
原创 一口气了解大模型相关通识,基础笔记!
,特指部分参数的微调方法,这种方法算力功耗比更高,也是目前最为常见的微调方法;除此之外,Fine-Tuning也可以代指全部微调方法,同时OpenAI中模型微调API的名称也是需要注意的是,OpenAI提供的在线微调方法也是一种高效微调方法,并不Fine-Tuning,是全量微调;微调, Fine-Tuning,一般指全参数的微调 (全量微调) ,指是一类较早诞生的微调方法,全参数微调需要消耗大量的算力,实际使用起来并不方便,因此不久之后又诞生了只围绕部分参数进行微调的高效微调方法;
2025-03-14 15:46:20
1186
原创 什么是大模型?大模型从入门到精通(超详细)看这一篇就够了!!!
大模型(Large Models),通常指的是拥有大量参数的深度学习模型。这些模型由于其规模庞大,能够捕捉到数据中的复杂模式,因此在自然语言处理(NLP)、计算机视觉(CV)等领域有着广泛的应用。例如,GPT-3 和 BERT 就是自然语言处理领域中著名的大型预训练模型。强大的表达能力:大量的参数使得模型可以更好地拟合复杂的数据分布。预训练+微调机制:通过在大规模数据上进行预训练,然后针对特定任务进行微调,大模型可以有效地利用迁移学习的力量。计算资源的进步。
2025-03-14 15:40:54
1127
原创 我们为什么要用本地大模型?本地大模型入门指南
大模型,在2023年主要称之为大型语言模型(Large Language Models),是一种基于人工智能和机器学习技术构建的先进模型,旨在理解和生成自然语言文本。这些模型通过分析和学习海量的文本数据,掌握语言的结构、语法、语义和上下文等复杂特性,从而能够执行各种语言相关的任务。LLM的能力包括但不限于文本生成、问答、文本摘要、翻译、情感分析等。我们最熟悉的大模型,莫过于CHATGPT。但我们最常用的大模型,未必是CHATGPT。
2025-03-14 15:38:43
864
原创 超详细!大模型面经指南(附答案)
LLM(Large Language Model,大型语言模型)是指基于大规模数据和参数量的语言模型。Transformer架构:大模型LLM常使用Transformer架构,它是一种基于自注意力机制的序列模型。Transformer架构由多个编码器层和解码器层组成,每个层都包含多头自注意力机制和前馈神经网络。这种架构可以捕捉长距离的依赖关系和语言结构,适用于处理大规模语言数据。自注意力机制(Self-Attention):自注意力机制是Transformer架构的核心组件之一。
2025-03-14 15:36:46
890
原创 本地离线部署大模型Ollama+AnythingLLM(保姆级)
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。下载完后,双击OllamaSetup,自动安装成功,默认安装在C盘,不能选择安装路径的哦,安装完后,右下角会出现Ollama图标。Qwen7b.gguf是阿里巴巴的通义千问大模型,7B大模型,7亿参数,至少需要8G内存,越大回复越流畅。以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
2025-03-07 16:36:10
597
原创 大模型本地部署:只需三步,手把手带你在Mac本地部署运行AI大模型
在当前的技术环境下,大型语言模型(LLMs)已经成为人工智能领域的一个重要里程碑。这些模型能够在各种任务上展现出人类水平的性能,包括但不限于文本生成、语言理解和问题解答。随着开源项目的发展,个人开发者现在有机会在本地部署这些强大的模型,以探索和利用它们的潜力。本文将详细介绍如何使用Ollama,一个开源项目,在Mac上本地运行大型模型(Win同理)。通过遵循以下步骤,即使是配备了几年前硬件的电脑,也能够顺利完成部署和运行。开源项目ollama:github链接。
2025-03-07 16:33:14
1015
原创 本地部署ai大模型(非常详细),零基础入门到精通,看这一篇就够了
现在的ai很多,让我看得有些眼花缭乱,随着ai的发展,现在已经有很多ai的大模型已经支持开源,所以现在支持部署一个大模型在自己电脑上,数据私人化。如果不知道自己是否需要或者是否合适配置可以跳到本文的结尾查看小编的使用感受。前排提示,文末有大模型AGI-CSDN独家资料包哦!首先打开开源网站github,大家自行百度就好然后用到现在非常火的ollama这个开源项目,项目地址是各位可以直接打开,然后里面有他们的项目介绍,还有直达官网的链接,然后自行选择下载对应的版本。
2025-03-07 16:13:22
975
原创 大模型终极指南:写给LLM新手的建议,助你少走两年弯路
1.不要只关心微调,SFT,RLHF,作为系统性学习是OK的,切忌花太多精力。2.想做应用的,建议集中到某个垂直领域比如对话机器人,问答系统,金融/医疗/教育方向,找一个具体的场景,把它做好,做深。3.多关心数据,数据管道,高质量训练/测试集的构建经验,对数据的感觉,是最直接,也是最适合用到未来工作当中的。4.大模型不只有算法,也可以有工程。大公司拼的都是基建,平台是对业务的支撑,牛逼的基础设施是大模型产品成功不可或缺的因素。读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用。
2025-03-04 17:40:09
1069
原创 2025大模型学习路线(超全面!超详细!)收藏这一篇就够了!
在深度学习领域,"大模型"通常指的是模型参数数量庞大、拥有深层结构的神经网络。这些模型的规模通常表现为网络中的参数数量,即模型中需要学习的权重和偏置的数量。具体来说,大模型可能包含数百万到数十亿的参数。
2025-03-04 17:38:57
333
原创 超越99% AI课程的大语言模型学习指南,AI大模型学习路线最新分享!
你是否因为大语言模型学习曲线陡峭,而迟迟不敢开始?又或者,你尝试过一些课程,却发现内容要么过于浅显,要么太过晦涩难懂,导致中途放弃?别担心,这篇文章将为你扫清障碍,无论你是零基础小白,还是希望更进一步的开发者,这份精心规划的学习指南都能帮你找到适合自己的学习路径。今天分享的这份学习指南不仅涵盖了从入门到专家的完整学习路线,还为你整理了丰富的资源链接,带你高效开启 AI 世界的大门!前排提示,文末有大模型AGI-CSDN独家资料包哦!
2025-03-04 17:36:53
1042
原创 用LangChain的LLM Graph Transformer解锁构建知识图谱构的新姿势
构建知识图谱是一个令人兴奋但充满挑战的任务,核心在于将非结构化的文本转化为结构化数据。这种方法已经存在了一段时间,但随着 LLM 的出现,这项技术开始进入主流应用领域。下图展示了将多篇文档中的文本信息(例如描述某人及其与公司的关系)转化为知识图谱。在左侧,我们看到的是原始的非结构化句子;而在右侧,这些信息被提取、组织,形成了实体和关系的可视化图谱,清晰地展现了“谁创立了什么公司”或“谁在哪些公司工作”等信息。那么,为什么要将文本转化为结构化的知识图谱呢?一个重要的应用场景是 RAG。
2025-03-03 16:20:59
666
原创 动手部署671B R1模型,详尽教程来了!
DeepSeek-R1 系列发布了 8 个开源模型,其中原生 DeepSeek 的只有 R1-Zero 和 R1,其他模型则是基于 DeepSeek 基础模型进行知识蒸馏,并采用 Qwen 或 LLaMA 架构的二次开发版本。本文动手部署了原生的 R1 版,当然受限于硬件条件限制采用了 2.51-bit 量化方案,并实际测试得出需要使用 4 块 H20 来进行部署 2.51-bit 量化的版本,需要 2 块 H20 来部署 1.58-bit 量化的版本。
2025-03-03 16:19:28
1009
原创 被问爆了!两个实战案例告诉你:不完美的AnythingLLM如何调出专业级法律文书知识助手
在法律文献检索领域,更“完美而恰当”的策略之一是:按法条分段,而非机械的按chunk size 分。但在AnythingLLM中目前不支持按段落或其他策略进行分切。调参的依据就是 调整一个参数,使之逼近按法条分段分切的效果。尽管不完美,但是足够好用。真相:尽管不完美,但是AnythingLLM调参后足够好用。另外1,有一些公网平台的 “法律文献检索智能体”,是基于大模型已学习的所有法律条文和条款,一般问答够用。
2025-03-03 16:17:45
1477
原创 通俗易懂!智能体(Agent)、AIGC、AGI:大模型时代的“三剑客”
最近,AI领域火出了圈,各种专业词汇也频繁冒出来,比如AGI、AIGC和智能体(Agent)。这些词听起来高大上,但它们到底是什么意思呢?今天,咱们就来唠唠这几个概念,顺便举几个例子,让大家更好理解~智能体(Agent)就像是 AI 的“行动派代表”,它是一种能够自主感知环境、做出决策并采取行动的计算实体。简单来说,Agent就像是AI的“行动派”,它不仅能思考,还能通过工具和行动去完成复杂的任务。你可以把它想象成《钢铁侠》里的贾维斯,它不仅能听懂钢铁侠的指令,还能自己做出决策,去完成各种任务。
2025-03-03 16:11:46
1092
原创 高阶RAG技巧:探索提升RAG系统性能的不同技巧
RAG 通过使生成模型能够引用外部数据来增强生成模型,从而提高响应准确性和相关性,同时减轻幻觉和信息差距。简单的 RAG 根据查询相似性检索文档,并直接将它们输入生成模型以生成响应。但是,更先进的技术(如本指南中详细介绍的技术)可以通过增强检索信息的相关性和准确性来显著提高 RAG 流水线的质量。本文回顾了可应用于 RAG 流水线各个阶段的高级 RAG 技术,以提高检索质量和生成响应的准确性。索引优化技术(如数据预处理和分块)专注于格式化外部数据以提高其效率和可搜索性。
2025-03-03 15:54:52
629
原创 Llama 3.2入门基础教程(非常详细),Llama 3.2微调、部署以及多模态训练入门到精通,收藏这一篇就够了!
9 月 25 日 Meta 发布了 Llama 3.2,包括 11B 和 90B 的视觉语言模型。
2025-03-03 15:51:08
1107
原创 DeepSeek V3一夜爆火,性能吊打GPT-4o?
12 月 26 日,DeepSeek-V3 首个版本上线并同步开源。据官方介绍,DeepSeek-V3 为自研 MoE 模型,671B 参数,激活 37B,在 14.8T token 上进行了预训练。其论文显示,DeepSeek V3 整个训练过程仅用了不到 280 万个 GPU 小时,相比之下,Llama 3 405B 的训练时长是 3080 万 GPU 小时(p.s. GPU 型号也不同)。
2025-02-24 17:16:24
927
原创 LangChain简单大模型应用,保姆级教程,收藏这篇就够了!
大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。从大模型系统设计入手,讲解大模型的主要方法;
2025-02-24 17:13:33
556
原创 大模型训练之训练数据准备,即怎么准备高质量的训练数据集?
训练数据集的质量是大模型的主要生命线之一,数据集质量直接影响到模型的性能和效果训练一个高性能且表现较好的模型是由多种因素决定的,比如模型的设计,损失函数与优化函数的实现,训练方式的选择;当然也包括高质量的训练数据。那么,怎么才能得到一个高质量的训练数据集呢?这个就是我们今天需要讨论的问题。训练数据集的准备机器学习和深度学习模型的性能高度依赖于训练数据的质量和数量;训练数据的准备工作对于构建一个高效可靠的模型至关重要。
2025-02-24 17:11:50
695
原创 AI模型部署:Triton+TensorRT部署Bert文本向量化服务实践
本篇介绍以Triton作为推理服务器,TensorRT作为推理后端,部署句嵌入向量模型m3e-base的工程方案和实现,句嵌入模型本质上是Bert结构,本案例可以推广到更一般的深度学习模型部署场景。前排提示,文末有大模型AGI-CSDN独家资料包哦!推理服务器和推理后端介绍TensorRT+Triton环境搭建Bert模型转化为ONNX中间表示ONNX中间表示编译为TensorRT模型文件Triton服务端参数配置Triton服务端代码实现Triton服务端启动。
2025-02-24 17:06:08
1442
原创 科普神文,一次性讲透AI大模型的核心概念
Transformer已经引领了各种尖端的AI应用程序的创建。除了支持像Bard和ChatGPT这样的聊天机器人之外,它还驱动我们移动键盘上的自动完成功能和智能扬声器中的语音识别。然而,它的真正威力在语言之外。它的发明者发现,transformer模型可以识别和预测任何重复的主题或模式。从图片中的像素,使用Dall-E、Midjourney和Stable Diffusion等工具,到计算机代码使用GitHub Copilot等生成器。它甚至可以预测音乐中的音符和蛋白质中的DNA来帮助设计药物分子。
2025-02-24 17:02:57
1045
原创 只要8G显卡!本地运行最强Llama 3.1大模型!
前几天,Meta发布了他们迄今为止体量最大的开源AI模型——Llama 3.1。这个模型在多项基准测试中表现卓越,甚至优于GPT-4o和Anthropic的Claude 3.5 Sonnet。这次发布的Llama 3.1有三个尺寸:8B(中杯)、70B(大杯)和 405B(超大杯)。相比几个月前发布的小型Llama 3模型,Llama 3.1复杂得多,能力更强。
2025-02-24 17:00:48
892
原创 RAG 开发四大痛点及解决方案
知识库缺乏必要的上下文信息,导致 RAG 系统在无法找到确切答案时,可能会提供模棱两可的错误信息,而不是直接表明其无知。这种情况下,用户可能会接收到误导性的信息,从而感到沮丧。“垃圾输入,垃圾输出。” 若源数据质量不佳,比如:存在相互矛盾的信息,即便是再完美的 RAG 流程也无法从劣质数据中提炼出有价值的知识。以下提出的解决方案不仅能解决这一难题,还能应对本文中提到的其他问题。高质量的数据是确保 RAG 流程顺畅运行的关键。
2025-02-24 16:59:09
776
原创 太强了!各个行业的AI大模型!金融、教育、医疗、法律..
数据集方面,项目团队不仅利用了现有的法律问答数据集,更通过self-Instruct技术,基于法条和真实案例构建了高质量的法律文本问答数据,大幅提升了模型在法律领域的表现,确保了回答的专业性和可靠性。该项目开创性地推出了生活空间健康大模型,深度整合了当前开源的中文医疗问答数据集,结合自建的生活空间健康对话大数据,构建了千万级别的扁鹊健康大数据BianQueCorpus,基于此精心打造了ChatGLM-6B为初始化的BianQue模型,全面提升了模型在医疗与健康领域的应用价值。
2025-02-24 16:55:51
654
原创 一键解锁AI生产力,Dify私有部署联合Ollama,打造专属本地模型!
今天聊聊AI智能体,同时也简单的将 Dify 本地私有化部署,接入 Ollama 部署的本地模型。AI智能体是什么?AI智能体是一种具备AI能力、感知、推理、决策和行动能力的计算系统,它能够自主与环境交互,完成特定任务。能够通过感知环境获取信息,分析并做出决策,然后执行相应的行动,有时还能通过学习不断优化自己的行为,尽可能达到预期结果。Dify 是什么?Dify 它是一个开源 LLM 应用开发平台。
2025-02-24 16:53:57
1350
原创 大规模语言模型的书籍分享
在当今人工智能领域,大规模语言模型成为了研究和应用的热点之一。它们以其大规模的参数和强大的性能表现,推动着机器学习和深度学习技术的发展。对于GPT 系列大规模语言模型的发展历程,有两点令人印象深刻。第一点是可拓展的训练架构与学习范式:Transformer 架构能够拓展到百亿、千亿甚至万亿参数规模,并且将预训练任务统一为预测下一个词这一通用学习范式;
2025-02-24 16:52:28
581
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人