直接通过网页API调用大模型确实方便快捷,尤其对于那些追求效率、希望快速集成AI功能的项目来说,云端服务是个不错的选择。但为啥有些企业和个人还琢磨着要把这些大模型搬到自家服务器上,搞个本地部署呢?
前排提示,文末有大模型AGI-CSDN独家资料包哦!
隐私保护
想象一下,如果你的公司处理的是客户敏感信息或者商业机密,直接把数据上传到云端处理,总有点担心信息外泄吧。本地部署就能让数据在内部流转,相当于给敏感信息加了个保险箱。
从国家层面来说,为什么国外ChatGPT这么厉害了,国家还要花大力气搞国产大模型?
因为大模型技术的飞速发展,会让其成为了重要敏感数据的诱捕器,ChatGPT将用户输入纳入训练数据库,用于改善ChatGPT,就能够利用大模型获得公开渠道覆盖不到的中文语料,掌握我们自己都可能不掌握的“中国知识”。所以必须搞国产大模型,不能通过API调用。
从行业层面说,比如用电行业,你想通过大模型生成一个用电分析报告,直接将生产数据通过API调用的方式访问大模型,一旦中间某个环节被监听或者泄露,那就是非常大的事故。
定制化和控制权
每个企业都有自己的一套流程和偏好,云端模型虽然通用,但可能不够贴身。本地部署就灵活多了,你可以按照自家的需求调整模型,训练它更好地理解行业术语,甚至优化算法来提升特定任务的效率,这样一来,模型就像是为你量身定做的。此外,再结合上一些前端和后端权限控制功能,就像自己做了一套完整的大模型应用。
这一点在toB场景非常常见。一般国企或者政府单位基于大模型做应用,一定是本地私有化部署的,原因有很多,咱就不细说了。
稳定性与响应速度
网络延迟、服务提供商的稳定性都是云端服务绕不开的问题。特别是一遇到高峰期,排队等待响应那就G了。本地部署就能确保服务的稳定性和低延迟,这对于要求即时反馈的场景非常重要。比如智能客服场景,你的QPS上去了,仍采用远程API调用,那服务会不会挂心里一点底都没有。比如你所在的环境可能网络不稳定或者压根儿没网,那也必须要本地部署。
ollama使用
现在本地部署大模型也不是难事。推荐使用开源工具ollama
像启动镜像一样本地下载运行大型语言模型
下载模型
Ollama 支持的模型列表见:https://ollama.com/library
ollama pull llama3
启动服务
如果你装好了ollama,启动模型服务只需执行如下命令:
Model | Parameters | Size | Download |
---|---|---|---|
Llama 3 | 8B | 4.7GB | ollama run llama3 |
Llama 3 | 70B | 40GB | ollama run llama3:70b |
Phi-3 | 3.8B | 2.3GB | ollama run phi3 |
Mistral | 7B | 4.1GB | ollama run mistral |
Neural Chat | 7B | 4.1GB | ollama run neural-chat |
Starling | 7B | 4.1GB | ollama run starling-lm |
Code Llama | 7B | 3.8GB | ollama run codellama |
Llama 2 Uncensored | 7B | 3.8GB | ollama run llama2-uncensored |
LLaVA | 7B | 4.5GB | ollama run llava |
Gemma | 2B | 1.4GB | ollama run gemma:2b |
Gemma | 7B | 4.8GB | ollama run gemma:7b |
Solar | 10.7B | 6.1GB | ollama run solar |
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓