建议先自己写
题面:
平面上有三条平行直线,每条直线上分别有7,5,6个点,且
不同直线上三个点都不在同一条直线上。问用这些点为顶点,
能组成多少个不同四边形?
现列举一下能做出的方法
它说:不同直线上三个点都不在同一条直线上,所以已下这种是错的
第一种连法
所以我们可以这样:两行都选一个点,然后另外一行选两个点,图示:
当然还有:
七个里面选两个点,5个和6个里面各选一个点
and
6个里面选两个点,5个和6个里面各选一个点
第二种连法
我们可以在两条线里每条各选两个点。
图:
PS:图片里给了选的方法
总结与计算
‘
总结与计算
C 2 7 × C 2 5 = 210 C\begin{array}{c} 2\\ 7 \end{array} ×C\begin{array}{c} 2\\ 5 \end{array}=210 C27×C25=210
7 个里面选 2 个和 5 个里面选 2 个的选法 7个里面选2个和5个里面选2个的选法 7个里面选2个和5个里面选2个的选法
C 2 7 × C 2 6 = 315 C\begin{array}{c} 2\\ 7 \end{array} ×C\begin{array}{c} 2\\ 6 \end{array}=315 C27×C26=315
7 个里面选 2 个和 6 个里面选 2 个的选法 7个里面选2个和6个里面选2个的选法 7个里面选2个和6个里面选2个的选法
C 2 5 × C 2 6 = 150 C\begin{array}{c} 2\\ 5 \end{array} ×C\begin{array}{c} 2\\ 6 \end{array}=150 C25×C26=150
5 个里面选 2 个和 6 个里面选 2 个的选法 5个里面选2个和6个里面选2个的选法 5个里面选2个和6个里面选2个的选法
C 1 7 × C 2 5 × C 1 6 = 420 C\begin{array}{c} 1\\ 7\end{array} ×C\begin{array}{c} 2\\ 5\end{array}×C\begin{array}{c} 1\\ 6\end{array}=420 C17×C25×C16=420
7 个点、 6 个点的边里面各选一个, 5 个点里的边选两个 7个点、6个点的边里面各选一个,5个点里的边选两个 7个点、6个点的边里面各选一个,5个点里的边选两个
C 1 5 × C 2 7 × C 1 6 = 630 C\begin{array}{c} 1\\ 5\end{array} ×C\begin{array}{c} 2\\ 7\end{array}×C\begin{array}{c} 1\\ 6\end{array}=630 C15×C27×C16=630
5 个点、 6 个点的边里面各选一个, 7 个点里的边选两个 5个点、6个点的边里面各选一个,7个点里的边选两个 5个点、6个点的边里面各选一个,7个点里的边选两个
C 1 7 × C 2 6 × C 1 5 = 525 C\begin{array}{c} 1\\ 7\end{array} ×C\begin{array}{c} 2\\ 6\end{array}×C\begin{array}{c} 1\\ 5\end{array}=525 C17×C26×C15=525
7 个点、 5 个点的边里面各选一个, 6 个点里的边选两个 7个点、5个点的边里面各选一个,6个点里的边选两个 7个点、5个点的边里面各选一个,6个点里的边选两个
然后加起来 然后加起来 然后加起来
210 + 315 + 150 + 420 + 630 + 525 = 2250 210+315+150+420+630+525=2250 210+315+150+420+630+525=2250
再见~