狐猬编程组合数学容斥原理测试3最后一题

题面

多重集合M=(4·x,3·y,2·z)的全排列中不出现 xxxx,yyy,zz模式的排列有多少种?

我们可以根据容斥原理求出不符合题目条件的次数,然后用总排列-不符合题目条件的次数。

回顾容斥原理公式:

A ⋃ B ⋃ C = ∣ A ∣ + ∣ B ∣ + ∣ C ∣ − ∣ A ⋂ B ∣ − ∣ A ⋂ C ∣ − ∣ B ⋂ C ∣ + ∣ A ⋂ B ⋂ C ∣ A\bigcup B \bigcup C=|A|+|B|+|C|-|A\bigcap B|-|A\bigcap C|-|B\bigcap C|+|A\bigcap B\bigcap C| ABC=A+B+CABACBC+ABC

那么在这题里:

重点敲黑板!!!

A A A就代表只出现xxxx的集合排列方式
B B B就代表只出现yyy的集合排列方式
C C C就代表只出现zz的集合全排列方式
A ⋃ B A \bigcup B AB表示出现xxxxandyyy的集合排列方式
A ⋃ C A\bigcup C AC表示出现xxxxandzz的集合排列方式
B ⋃ C B\bigcup C BC表示出现yyyzz的集合排列方式
A ⋃ B ⋃ C A\bigcup B\bigcup C ABC表示出现xxxxyyyandzz的集合排列方式
然后把这些方式都加起来,最后用全排列减去

计算方法

计算全排列

简化后题目:
一共有4个x、3个y,2个z,对他们进行重排列
( 4 + 3 + 2 ) ! ÷ 4 ! ÷ 3 ! ÷ 2 ! = 1260 (4+3+2)!\div 4! \div 3! \div 2!=1260 (4+3+2)!÷4!÷3!÷2!=1260
PS:这里 ÷ 4 ! \div 4! ÷4! ÷ 3 \div 3 ÷3 and ÷ 2 ! \div2! ÷2!,是用来去重的,因为有元素相同

∣ A ∣ |A| A

我们要计算xxxx挨在一起,那么把xxxx看成一个整体,那么就变成了 1 + 3 + 2 1+3+2 1+3+2个元素的重排列
( 1 + 3 + 2 ) ! ÷ 3 ! ÷ 2 ! = 60 (1+3+2)!\div 3! \div 2!=60 (1+3+2)!÷3!÷2!=60

∣ B ∣ |B| B

我们要计算yyy挨在一起,那么和上面一样,把yyy看成一个整体,那么就变成了 4 + 1 + 2 4+1+2 4+1+2个元素的重排列
( 4 + 1 + 2 ) ! ÷ 4 ! ÷ 2 ! = 105 (4+1+2)!\div4! \div 2!=105 (4+1+2)!÷4!÷2!=105

∣ C ∣ |C| C

计算方法同上把zz看成一个整体,那么就变成了 4 + 3 + 1 4+3+1 4+3+1个元素的重排列
( 4 + 3 + 1 ) ! ÷ 4 ! ÷ 3 ! = 280 (4+3+1)!\div4! \div3!=280 (4+3+1)!÷4!÷3!=280

A ⋃ B A \bigcup B AB

就是计算有多少种排列里同时出现了xxxxyyy,
和上面一样,把这两个都分别看成两个整体
那就变成了 1 + 1 + 2 1+1+2 1+1+2种元素的重排列
( 1 + 1 + 2 ) ! ÷ 2 ! = 12 (1+1+2)!\div2!=12 (1+1+2)!÷2!=12

A ⋃ C A \bigcup C AC

同上,计算有多少种排列里同时出现了xxxxzz
把这两部分分别看成两个整体
那就变成了 1 + 3 + 1 1+3+1 1+3+1种元素的重排列
( 1 + 1 + 3 ) ! ÷ 3 ! = 20 (1+1+3)!\div 3!=20 (1+1+3)!÷3!=20

B ⋃ C B \bigcup C BC

同上,是什么?
对!就是计算有多少种排列里同时出现了yyyzz
那就变成了什么元素的重排列
对,就是4+1+1种元素的重排列
( 4 + 1 + 1 ) ! ÷ 4 ! = 30 (4+1+1)!\div 4!=30 (4+1+1)!÷4!=30

倒数第二步,计算 A ⋃ B ⋃ C A \bigcup B \bigcup C ABC

看懂上面这个也就会了

不就是把xxxx,yyyandzz都分别当成一份吗
那就是1+1+1种元素的排列,因为没有重复元素,不需要去重
( 1 + 1 + 1 ) ! = 6 (1+1+1)!=6 (1+1+1)!=6

引用容斥原理

You see this,Yes the right here!↓

A ⋃ B ⋃ C = ∣ A ∣ + ∣ B ∣ + ∣ C ∣ − ∣ A ⋂ B ∣ − ∣ A ⋂ C ∣ − ∣ B ⋂ C ∣ + ∣ A ⋂ B ⋂ C ∣ A\bigcup B \bigcup C=|A|+|B|+|C|-|A\bigcap B|-|A\bigcap C|-|B\bigcap C|+|A\bigcap B\bigcap C| ABC=A+B+CABACBC+ABC

已经算完了每个东西,现在计算

60 + 105 + 280 − 12 − 20 − 30 + 6 = 389 60+105+280-12-20-30+6=389 60+105+280122030+6=389

最后别忘了拿全排列 1260 − 389 = 871 1260-389=871 1260389=871

T h e   e n d The~end The end

——————————————————————————————————————————————————————————————————————————————————————

T h a n k s   f o r   w a t c h i n g ! Thanks~for~watching! Thanks for watching!

G o o d   l u c k ! Good~luck! Good luck!

G o o d   b y e !   Good~bye!~ Good bye! 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值