题面
多重集合M=(4·x,3·y,2·z)的全排列中不出现 xxxx,yyy,zz模式的排列有多少种?
我们可以根据容斥原理求出不符合题目条件的次数,然后用总排列-不符合题目条件的次数。
回顾容斥原理公式:
A ⋃ B ⋃ C = ∣ A ∣ + ∣ B ∣ + ∣ C ∣ − ∣ A ⋂ B ∣ − ∣ A ⋂ C ∣ − ∣ B ⋂ C ∣ + ∣ A ⋂ B ⋂ C ∣ A\bigcup B \bigcup C=|A|+|B|+|C|-|A\bigcap B|-|A\bigcap C|-|B\bigcap C|+|A\bigcap B\bigcap C| A⋃B⋃C=∣A∣+∣B∣+∣C∣−∣A⋂B∣−∣A⋂C∣−∣B⋂C∣+∣A⋂B⋂C∣
那么在这题里:
重点敲黑板!!!
A
A
A就代表只出现xxxx
的集合排列方式
B
B
B就代表只出现yyy
的集合排列方式
C
C
C就代表只出现zz
的集合全排列方式
A
⋃
B
A \bigcup B
A⋃B表示出现xxxx
andyyy
的集合排列方式
A
⋃
C
A\bigcup C
A⋃C表示出现xxxx
andzz
的集合排列方式
B
⋃
C
B\bigcup C
B⋃C表示出现yyy
和zz
的集合排列方式
A
⋃
B
⋃
C
A\bigcup B\bigcup C
A⋃B⋃C表示出现xxxx
、yyy
andzz
的集合排列方式
然后把这些方式都加起来,最后用全排列减去
计算方法
计算全排列
简化后题目:
一共有4个x、3个y,2个z,对他们进行重排列
(
4
+
3
+
2
)
!
÷
4
!
÷
3
!
÷
2
!
=
1260
(4+3+2)!\div 4! \div 3! \div 2!=1260
(4+3+2)!÷4!÷3!÷2!=1260
PS:这里
÷
4
!
\div 4!
÷4!、
÷
3
\div 3
÷3 and
÷
2
!
\div2!
÷2!,是用来去重的,因为有元素相同
∣ A ∣ |A| ∣A∣
我们要计算xxxx
挨在一起,那么把xxxx
看成一个整体,那么就变成了
1
+
3
+
2
1+3+2
1+3+2个元素的重排列
(
1
+
3
+
2
)
!
÷
3
!
÷
2
!
=
60
(1+3+2)!\div 3! \div 2!=60
(1+3+2)!÷3!÷2!=60
∣ B ∣ |B| ∣B∣
我们要计算yyy
挨在一起,那么和上面一样,把yyy
看成一个整体,那么就变成了
4
+
1
+
2
4+1+2
4+1+2个元素的重排列
(
4
+
1
+
2
)
!
÷
4
!
÷
2
!
=
105
(4+1+2)!\div4! \div 2!=105
(4+1+2)!÷4!÷2!=105
∣ C ∣ |C| ∣C∣
计算方法同上把zz
看成一个整体,那么就变成了
4
+
3
+
1
4+3+1
4+3+1个元素的重排列
(
4
+
3
+
1
)
!
÷
4
!
÷
3
!
=
280
(4+3+1)!\div4! \div3!=280
(4+3+1)!÷4!÷3!=280
A ⋃ B A \bigcup B A⋃B
就是计算有多少种排列里同时出现了xxxx
和yyy
,
和上面一样,把这两个都分别看成两个整体
那就变成了
1
+
1
+
2
1+1+2
1+1+2种元素的重排列
(
1
+
1
+
2
)
!
÷
2
!
=
12
(1+1+2)!\div2!=12
(1+1+2)!÷2!=12
A ⋃ C A \bigcup C A⋃C
同上,计算有多少种排列里同时出现了xxxx
和zz
把这两部分分别看成两个整体
那就变成了
1
+
3
+
1
1+3+1
1+3+1种元素的重排列
(
1
+
1
+
3
)
!
÷
3
!
=
20
(1+1+3)!\div 3!=20
(1+1+3)!÷3!=20
B ⋃ C B \bigcup C B⋃C
同上,是什么?
对!就是计算有多少种排列里同时出现了yyy
和zz
那就变成了什么元素的重排列
对,就是4+1+1
种元素的重排列
(
4
+
1
+
1
)
!
÷
4
!
=
30
(4+1+1)!\div 4!=30
(4+1+1)!÷4!=30
倒数第二步,计算 A ⋃ B ⋃ C A \bigcup B \bigcup C A⋃B⋃C
看懂上面这个也就会了
不就是把xxxx
,yyy
andzz
都分别当成一份吗
那就是1+1+1
种元素的排列,因为没有重复元素,不需要去重
(
1
+
1
+
1
)
!
=
6
(1+1+1)!=6
(1+1+1)!=6
引用容斥原理
You see this,Yes the right here!↓
A ⋃ B ⋃ C = ∣ A ∣ + ∣ B ∣ + ∣ C ∣ − ∣ A ⋂ B ∣ − ∣ A ⋂ C ∣ − ∣ B ⋂ C ∣ + ∣ A ⋂ B ⋂ C ∣ A\bigcup B \bigcup C=|A|+|B|+|C|-|A\bigcap B|-|A\bigcap C|-|B\bigcap C|+|A\bigcap B\bigcap C| A⋃B⋃C=∣A∣+∣B∣+∣C∣−∣A⋂B∣−∣A⋂C∣−∣B⋂C∣+∣A⋂B⋂C∣
已经算完了每个东西,现在计算
60 + 105 + 280 − 12 − 20 − 30 + 6 = 389 60+105+280-12-20-30+6=389 60+105+280−12−20−30+6=389
最后别忘了拿全排列 1260 − 389 = 871 1260-389=871 1260−389=871
T h e e n d The~end The end
——————————————————————————————————————————————————————————————————————————————————————