5308. 公路
小苞准备开着车沿着公路自驾。
公路上一共有 n个站点,编号为从 11到 n。
其中站点 i与站点 i+1 的距离为 vi 公里。
公路上每个站点都可以加油,编号为 i的站点一升油的价格为 ai 元,且每个站点只出售整数升的油。
小苞想从站点 11 开车到站点 n,一开始小苞在站点 11 且车的油箱是空的。
已知车的油箱足够大,可以装下任意多的油,且每升油可以让车前进 d 公里。
问小苞从站点 11 开到站点 n,至少要花多少钱加油?
输入格式
输入的第一行包含两个正整数 n和 d,分别表示公路上站点的数量和车每升油可以前进的距离。
输入的第二行包含 n−1个正整数 v1,v2…vn−1,分别表示站点间的距离。
输入的第三行包含 n 个正整数 a1,a2…an,分别表示在不同站点加油的价格。
输出格式
输出一行,仅包含一个正整数,表示从站点 11 开到站点 n,小苞至少要花多少钱加油。
数据范围
对于所有测试数据保证:1≤n≤105,1≤d≤105,1≤vi≤105,1≤ai≤105。
特殊性质 A:站点 11 的油价最低。
特殊性质 B:对于所有 1≤i<n,vi为 d的倍数。
输入样例:
5 4
10 10 10 10
9 8 9 6 5
输出样例:
79
样例解释
最优方案下:小苞在站点 1 买了 3 升油,在站点 2 购买了 5 升油,在站点 4 购买了 2 升油。
身为一个小白的我刚看完题,就明白贪心求解(全凭感觉)于是就开始想贪心策略了
我思路是这样
建立一个数组d[i]表示前i个站点的最小值,可通过对a[]的预处理得到
代码:
for(int i=1;i<=n;i++)//预处理d[]
{
if(a[i]>cnt)
{
d[i]=cnt;
}
else
{
d[i]=a[i];
cnt=a[i];
}
}
接下来就简单了,判断d[i]跟d[i+1]是否相同,if相同把距离累加到sum里,不相同时算出走过站点的油费就ok,最后再看一下sum是否大于0,大于0的话说明还有钱没算上,再加个特判就ok了
for(int i=1;i<=n-1;i++)
{
if(d[i+1]==d[i])//如果下一个站点的油价跟目前相同
{
sum+=v[i];
}
else//不同时计算已走过的最低路费
{
sum+=v[i];
if(sum%q==0)
{
ans+=(sum/q)*d[i];
sum=0;
}
else
{
ans+=(sum/q+1)*d[i];
sum=sum-q*(sum/q)-q;
}
}
}
if(sum>0)//如果sum大于0,则还有距离sum到终点,计算剩余油费
{
if(sum%q==0)
ans+=sum/q*d[n-1];
else
ans+=(sum/q+1)*d[n-1];
}
写到这步,这道题就ok了,最后完整代码:
#include<iostream>
using namespace std;
int v[100010];//距离
int a[100010];//每个站点的油价
int d[100010];//表示前i个站点的最低油价
long long ans,sum;//不开long long见祖宗
int main()
{
int n,q;
cin>>n>>q;
for(int i=1;i<=n-1;i++)
{
cin>>v[i];
}
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
int cnt=a[1];
for(int i=1;i<=n;i++)//预处理d[]
{
if(a[i]>cnt)
{
d[i]=cnt;
}
else
{
d[i]=a[i];
cnt=a[i];
}
}
for(int i=1;i<=n-1;i++)
{
if(d[i+1]==d[i])//如果下一个站点的油价跟目前相同
{
sum+=v[i];
}
else//不同时计算已走过的最低路费
{
sum+=v[i];
if(sum%q==0)
{
ans+=(sum/q)*d[i];
sum=0;
}
else
{
ans+=(sum/q+1)*d[i];
sum=sum-q*(sum/q)-q;
}
}
}
if(sum>0)//如果sum大于0,则还有距离sum到中点,计算剩余油费
{
if(sum%q==0)
ans+=sum/q*d[n-1];
else
ans+=(sum/q+1)*d[n-1];
}
cout<<ans;
}
注释不太多,应该不影响理解,完结撒花!!