- 博客(1209)
- 收藏
- 关注

原创 DeepSeek本地部署+投喂数据训练AI教程!!
DeepSeek-R1,是深度求索(DeepSeek)研发的推理模型,本地部署后完全免费,无使用次数限制。DeepSeek-R1采用的大规模强化学习技术,尤其擅长数学、代码和自然语言推理等复杂任务。DeepSeek-R1系列模型(1.5b~671b)开源且免费,进一步降低了AI应用门槛,赋能开源社区发展。使用教程❶Win版安装教程(Ollama+AnythingLLM安装、DeepSeek模型下载)❷Mac版安装教程(Ollama+AnythingLLM安装、DeepSeek模型下载)
2025-02-05 13:49:42
144682
21

原创 【手把手教你】搭建私有大模型+私有知识库
就是把目前最流行的开源大模型部署到自己的电脑上,无需联网、也不用买会员,隐私可不会泄露,直接可以和AI聊天。就是你可以把你喜欢的资料统统喂给大模型,然后让AI查询你指定的材料,再来回复你的问题。若是在公司搭建这套组合,可以把公司的介绍、产品数据、销售数据等等都发给私有大模型,回复用户的信息就更有针对性。大模型搭建已经分享过了,就不在此赘述,直接进入主题,知识库搭建。AnthingLLM可以直接在其界面上对话,导入各种形式的资料。也可以把本地AI大模型和知识库做成接口API,在企业的其他应用里面去调用。
2024-12-09 17:49:19
4187

原创 Llama3微调教程:超简单,人人都可以打造属于自己的GPT!
本教程详细介绍了如何使用Unsloth和Google Colab环境对Llama 3进行微调。使用Colab基本上是无脑点击运行就好了。经过这个教程,我们发现微调模型主要有三个核心环节:数据准备,这一步决定了质量;模型训练,这一步硬件资源决定了时间;模型测试,因为我们初步体验,所以比较简略,后续可以进一步探讨。通过本教程,即使是AI领域的新手也能够掌握大模型的微调技术。Unsloth不仅降低了技术门槛,也为个人和小团队提供了强大的工具。如果还有问题,可以查看我的notebook或者进群讨论。
2024-05-29 17:45:59
11256
2

原创 『保姆级』大模型教程来了(从入门到实战)
在大模型的构建之下,AI自动化交互,将会决定世界的未来,谁的大模型更强大,将决定在遥远的未来的话语权,同时,大模型会成为AI基础设施。AI大模型,正在构建的颠覆力,为了更好的入局AI大模型,🔻 针对ChatGLM大模型,介绍ChatGLM模型微调。🔻 大模型的定义和特点,如预训练、微调、指令学习等。🔻 05 精读大模型-3论文、Instruct论文。🔻 04 GLM-130B训练营——论文泛读。🔻 05 GLM-130B训练营——论文精读。🔻 08 Alpaca训练营——论文精读。
2024-04-01 17:50:11
5623
原创 【值得收藏】程序员必备:交叉熵与MSE损失函数原理及Python实现
本文解析了机器学习中两种核心损失函数:交叉熵损失(用于分类任务)和均方误差损失(用于回归任务)。交叉熵通过衡量预测与真实概率分布的差异优化模型,其信息论基础源自香农熵;均方误差则计算预测值与真实值误差平方。文章包含两类损失函数的数学公式、物理意义图示,并展示基于scikit-learn的Python实现代码。特别提供了由清华-加州理工双料博士团队研发的大模型学习资料(含学习路线/实战项目/必读书籍/面试题),通过VX扫码可免费获取全套零基础系统教程,帮助读者快速掌握大模型技术以应对百万级人才缺口。
2025-09-13 21:45:00
323
原创 【收藏必备】为什么你的RAG系统回答总“不着调“?15种文本切分技巧让你模型表现飙升!
本文系统介绍了RAG系统中的15种文本分块技术,包括按行、固定大小、滑动窗口、句子、段落等切分方法。针对不同场景如聊天记录、技术文档、PDF合同等,详细说明了每种方法的适用性、实现代码和注意事项。文章强调合理选择分块策略对提高RAG效果至关重要,可避免模型产生错误回答,并附对比表格帮助快速选择合适方案。最后指出chunking是RAG系统中最易被忽视却影响效果的关键环节,建议根据数据结构优化分块策略。
2025-09-13 19:30:00
593
原创 【值得收藏】Hugging Face超大规模LLM训练指南:从单GPU到512GPU的分布式技术全解析
Hugging Face发布超大规模LLM训练手册,详细介绍了从单GPU扩展到512GPU集群的完整技术方案。该研究通过4000多次实验验证了数据并行、ZeRO优化、张量并行等关键技术,有效解决了显存限制、计算效率与通信开销三大核心挑战。手册特别强调通过激活值重计算、梯度累积、混合精度等技术优化显存使用,同时实现计算与通信重叠来提升GPU利用率。这项研究为实现民主化AI训练提供了重要技术参考,使各类组织都能高效训练自己的大模型。
2025-09-13 18:45:00
259
原创 从技术内核到落地实践:全方位解析 RAG 技术,助你搭建企业级 AI 知识库
从技术内核到落地实践:全方位解析 RAG 技术,助你搭建企业级 AI 知识库
2025-09-13 14:31:11
555
原创 大语言模型主流微调技术深度解析:Prompt-tuning、Prefix-tuning与LoRA的核心差异
大语言模型主流微调技术深度解析:Prompt-tuning、Prefix-tuning与LoRA的核心差异
2025-09-13 14:26:46
594
原创 智能体(Agent)大模型应用指南:核心模块拆解、技术实现与业务落地全攻略 | 必备收藏
AI智能体架构解析与应用指南:从理论到实践 摘要:本文系统性地阐述了AI智能体的核心架构,将其定义为"大脑+身体+记忆+目标"的有机整体,详细拆解了感知理解、规划决策、工具调用和执行反馈四大关键模块。通过技术架构图与政务、金融、电商等行业案例,展示了智能体如何提升业务效率与用户体验。文章还提供了从场景设计到评估迭代的完整实施指南,包括任务流设计、工具库构建、记忆系统开发等关键步骤,以及量化评估指标。最后探讨了智能体面临的挑战与未来发展趋势,为读者呈现了一套从概念到落地的完整方法论。
2025-09-12 22:30:00
1088
原创 【深度学习必备】Transformer架构解析:大模型基础与PyTorch实现(收藏)
本文深入解析Transformer架构的核心技术,包括多头注意力机制、位置编码、前馈网络和残差连接等模块。文章通过PyTorch实现代码,帮助开发者理解这些关键技术的运作原理。重点介绍了位置编码的正余弦函数设计、自注意力机制的三向量计算,以及残差连接和层归一化对训练稳定性的提升作用。文末还提供了大模型学习资料,包括学习路线、实战项目和面试题库,助力开发者系统掌握大模型技术。
2025-09-12 21:30:00
462
原创 【必收藏】多智能体系统8大最佳实践:告别死循环,打造高效协作的AI团队
本文介绍了多智能体系统(MAS)的最佳实践,从单一对话机器人到智能代理网络的演进。提出了8个核心实践方案:明确角色分工、本地化内存管理、精细化工具控制、模块化架构设计、设定终止条件、完善日志记录、确保可中断性及安全性、实施版本控制。这些方法能有效解决代理死循环、工具滥用等问题,帮助开发者构建高效安全的协作系统。文章强调多智能体系统本质是团队协作系统,未来AI应用将从孤立提示词发展为协作智能网络。
2025-09-12 20:30:00
803
原创 小白必看:MCP、RAG、Agent彻底解析,值得收藏学习!
AI技术"黄金三角"解析 MCP作为AI界的"万能转换器",统一各类工具接口标准,解决了模型调用外部工具的兼容性问题。RAG技术通过检索海量知识库增强生成内容,有效消除AI"幻觉"。Agent则能自主理解任务、规划步骤并调用工具完成目标。三者协同工作:MCP提供基础设施支持,RAG确保知识准确性,Agent负责智能决策执行。这种组合让AI从被动应答进化为主动助手,在智能客服、企业办公、智能家居等领域展现出强大潜力,推动AI向更智能、更实用的方向发展
2025-09-11 21:15:00
733
原创 【珍藏必学】大模型性能倍增器:从零掌握KV Cache核心技术
KV Cache是Transformer模型自回归推理的核心优化技术,通过缓存历史键值矩阵将计算复杂度从O(n²)降至O(n)。本文系统阐述了KV Cache的工作原理、实现细节及优化策略:1)缓存机制通过复用历史计算结果避免重复计算;2)关键技术包括缓存结构设计、内存管理和滑动窗口机制;3)代码实现展示了PyTorch环境下的缓存应用;4)优化策略涵盖分页缓存、动态管理和量化技术。该技术显著提升了大模型推理效率,是解决实际部署中性能瓶颈的关键,对推动大模型应用落地具有重要意义。
2025-09-11 21:15:00
681
原创 【强烈收藏】一文读懂Transformer架构原理,AI时代必备知识
本文深入浅出地解析了Transformer架构的核心原理,涵盖从输入预处理到模型输出的完整流程。重点讲解了token分词、词嵌入、位置编码等关键技术,详细剖析了编码器的多头自注意力机制和位置感知前馈网络,以及解码器特有的掩码机制。通过生动的示例和图示,阐明Transformer如何处理序列数据、捕捉语义关系和生成预测结果,帮助读者理解这一革命性AI架构的工作机制。文章还提供了大模型学习资源,适合AI从业者和爱好者系统掌握Transformer原理。
2025-09-11 20:45:00
1093
原创 数据治理×AI大模型:从入门到精通的进阶宝典,含落地案例与全链路解决方案
数据治理×AI大模型:从入门到精通的进阶宝典,含落地案例与全链路解决方案
2025-09-11 15:46:46
1082
原创 收藏必备!AI大模型Agent设计的10个高频挑战问题及解决方案
【摘要】本文系统梳理了10个AI大模型Agent设计核心问题,覆盖RAG评估、幻觉优化、有限资源微调、多语言检索等关键技术难点。每个问题提供解决方案与代码示例,如使用deepeval评估RAG性能、QLoRA微调降低显存消耗、CLIPScore评估多模态生成等。内容强调技术选型与架构思维的结合,既包含具体实现方法(如Contriever优化检索、vLLM加速推理),又涉及持续改进策略(反馈机制、监控仪表盘)。特别针对法律、医疗等专业领域提出针对性优化方案,并包含Milvus、PEFT等工具链实践指南,帮助开
2025-09-10 21:00:00
775
原创 大模型应用新突破!LightRAG:用知识图谱+双层检索解决传统RAG“只见树木,不见森林“问题(建议收藏)
LightRAG:基于知识图谱的双层检索RAG系统 摘要:LightRAG是一款创新的开源RAG系统,通过知识图谱构建和双层检索机制解决了传统RAG系统在信息关联性理解上的不足。其核心技术包括: 知识图谱构建阶段,通过语义理解提取实体和关系 双层检索架构(低层精确检索+高层全局检索) 智能混合检索模式 实测数据显示,相比传统RAG,LightRAG在查询准确率提升18%,响应时间降低44%,Token使用量减少99%。系统特别适用于企业知识管理、法律文档分析等需要复杂推理的场景,支持多模态文档处理和动态知识
2025-09-10 19:45:00
675
原创 大模型Prompt工程与优化实战:从入门到精通的完整指南【建议收藏】
这篇文章系统介绍了大模型Prompt工程的实践方法,主要包括: Prompt组成结构:包含预设角色、技能描述、限制条件、输出要求等要素 Prompt组装技术:详细介绍了Velocity语法(Java生态)和Jinja2模板(Python生态)两种实现方式及适用场景 Prompt调优经验:总结了13条实用技巧,包括COT应用、示例规则优化、few-shot使用等 Context工程:针对业务场景复杂化问题,提出上下文管理解决方案,包括Select Context和Compress Context两种优化思路
2025-09-10 18:45:00
604
原创 【小白必看】llamafactory大模型微调实战:identity数据集训练与测试教程(收藏级)
文章详细介绍了使用llamafactory工具对DeepSeek R1 1.5B模型进行微调的完整流程,包括修改identity数据集、设置模型参数、配置训练轮数和批处理大小等关键参数,以及监控训练过程和测试微调后模型的方法。作者通过实际演示,展示了如何调整模型使其具备特定身份认知功能,并指出约600个epoch即可获得良好效果,为初学者提供了清晰的大模型微调实践指南。
2025-09-09 20:45:00
823
原创 收藏!小白必学:用LLaMA-Factory轻松微调大模型,打造专业医疗问答AI助手
摘要:本文介绍如何利用LLaMA-Factory工具微调Qwen3-0.6B-Instruct模型构建中文医疗问答助手。从环境搭建(Ubuntu系统、CUDA配置)到安装LLaMA-Factory,详细说明数据处理流程(使用Huatuo-Lite数据集并转换为Alpaca格式)。重点解析关键训练参数(学习率、训练轮数等)的配置逻辑,最后通过WebUI一键启动训练。该方案在消费级GPU(如RTX3080)上即可实现高效微调,显著降低了大模型应用门槛,为开发者提供了完整的AI医疗助手构建指南。(150字)
2025-09-09 19:45:00
569
原创 【建议收藏】Agent框架全解析:从理论到实践的大模型开发指南
文章摘要:本文深入探讨了Agent框架的设计理念与应用实践,指出Agent与工作流的本质区别在于流程控制权(预设路径vs动态决策)。可靠Agent系统构建的核心挑战在于确保大模型获得精准上下文,而大多数生产级系统实为工作流与Agent的混合体。LangGraph作为编排框架的价值在于其灵活性——既支持声明式工作流,又能构建高自主性Agent系统,同时提供记忆存储、人机协作和调试工具等关键功能。作者强调应根据业务需求在可预测性与自主性之间寻找平衡点,而非盲目追求Agent化。
2025-09-09 18:45:00
862
原创 智能体开发指南(小白友好):一文带你搞懂:什么是 AI Agent?什么是 Agentic AI?
智能体开发指南(小白友好):一文带你搞懂:什么是 AI Agent?什么是 Agentic AI?
2025-09-09 14:43:36
811
原创 转行大模型开发难不难?程序员 & 小白必看!全面分析与实战建议(建议收藏)
转行大模型开发难不难?程序员 & 小白必看!全面分析与实战建议(建议收藏)
2025-09-09 14:25:33
689
原创 大模型部署必看!视觉多模态性能优化全链路实战:Qwen2.5-VL架构与QPS提升技巧
本文介绍了视觉多模态模型Qwen2.5-VL的部署优化方案。通过对比vLLM和SGLang框架,提出了三种部署策略:独立部署(快速验证)、混合部署(结合TensorRT优化ViT模块)和分离部署(ViT与LLM分设备运行)。测试显示,分离部署模式在4090显卡上实现了最佳性能(QPS 10.8),同时分析了不同方案的适用场景。文章还探讨了视频预处理对CPU资源的占用问题,强调了控制服务分离的重要性,为多模态模型的高效部署提供了实践参考。
2025-09-08 20:45:00
869
原创 【建议收藏】打造高性能AI Agent:系统级上下文工程的13个关键技巧
本文系统总结了AI Agent上下文工程的13个核心技巧,涵盖性能优化、记忆管理、提示设计等六大维度。KV-Cache优化可降低10倍成本,文件系统扩展突破128K限制,动态提示词实现环境自适应,工具边界显式化减少无效尝试。关键创新包括:记忆分级(短期纠偏+长期知识库)、多智能体竞争验证、三级熔断人工干预机制。通过术语对齐、错误保留、Logits掩码等技术,使模型更精准、更可靠。这些方法已在Claude等模型验证,显著提升任务理解能力和错误恢复率,为构建高效AI系统提供完整方法论。
2025-09-08 19:30:00
612
原创 【深度收藏】告别AI“失忆“与“话痨“:上下文工程四大策略,让AI Agent更懂你
《从提示词到上下文工程:AI Agent的四大进化策略》摘要: 本文揭示了AI开发从提示词工程向上下文工程的范式转变,提出"写选压隔"四维策略解决AI核心痛点。"写策略"通过持久化存储解决记忆缺失;"选策略"实现精准知识筛选;"压策略"高效优化信息密度;"隔策略"采用多Agent分工协作。这些方法使AI突破单次对话局限,具备长期记忆、精准决策和复杂任务处理能力。文章指出,未来AI将向自主评估、多模态整合的&q
2025-09-08 18:45:00
1193
原创 构建时序感知智能 RAG 系统:AI 自动处理动态数据,助力知识库实时更新
现代RAG与智能体架构依赖动态更新的知识库处理问答任务。本文提出六层时序智能体管道架构,包括语义分块、原子事实提取、实体解析等模块,构建可查询的知识图谱。基于财务报告数据集,通过预处理分析数据特征,验证了时序管理机制的必要性,确保知识更新与检索的时间有效性,为AI决策提供可靠支持。
2025-09-06 21:45:00
623
原创 RAG 彻底爆了!效果优化全攻略:架构设计 + 核心要点一文掌握
摘要:RAG技术破解企业AI"幻觉"难题,实现精准知识检索与生成 RAG(检索增强生成)技术通过将大模型与实时知识库结合,有效解决了AI"胡说八道"、知识滞后等行业痛点。该技术不仅将专业领域准确率从23%提升至89%,还具备成本低(节省95%训练费用)、数据安全(敏感信息不出库)、灵活扩展等优势。其核心在于混合检索策略(向量+关键词)和精细的查询预处理,使企业能构建动态更新的智能系统。微软、阿里等巨头已将RAG作为AI落地首选方案,预计2025年75%企业应用将采用该
2025-09-06 21:00:00
629
原创 RAG 真的过时了吗?电信级 AI 应用需「工作流 + RAG」双引擎支撑
本文提出运营商故障修复的智能化解决方案,强调单纯依靠人力或大模型均存在局限,需通过工程化工作流实现可控自动化。文章以电信客服场景为例,详细阐述了将模型能力嵌入工作流节点的实施方法,包括意图识别、信息查询、诊断决策、工单生成等关键环节,并提供了基于Agently框架的代码示例。方案突出流程可审计、操作幂等性、人机协同等工程要点,可有效降低误判率、缩短故障修复时间。最后指出工作流是将AI转化为稳定服务的关键路径,使智能能力变得可衡量、可改进。
2025-09-05 19:45:22
1005
原创 警惕!阿里 3000 岗超半数聚焦 AI,AI 已成产品人必备技能,不懂真要落后
警惕!阿里 3000 岗超半数聚焦 AI,AI 已成产品人必备技能,不懂真要落后
2025-09-05 15:29:12
694
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人