自动驾驶要靠大模型盈利了?

随着人工智能技术日渐成熟和政策法规相继出台,自动驾驶领域风起云涌,乘坐无人车直达机场、横跨长江已经成为寻常事,测试路段范围进一步扩大,自动驾驶已经来到了大规模商业化的前夜。

5月15日,以“曙光”为主题的Apollo Day 2024开放日在武汉百度萝卜快跑汽车机器人智行谷举行。在此次开放日上,百度Apollo重磅发布了全球首个支持L4级别无人驾驶应用的自动驾驶大模型Apollo ADFM,同时上新了搭载百度第六代智能化系统解决方案、价格20万元的萝卜快跑第六代无人车。据悉,在大模型的赋能与重构下,百度自动驾驶或将比人类驾驶更安全。

与此同时,百度自动驾驶业务部总经理陈卓表示,自动驾驶要实现商业化,需要收入侧与成本侧双管齐下。而通过精细化的成本管控,萝卜快跑的成本持续降低,收入稳定增长,有望成为全球首个实现商业化盈利的自动驾驶出行服务平台。

至此,自动驾驶大规模盈利的时代即将到来。

安全奠定商业化基础

自动驾驶具备广阔的市场前景已经成为行业的共识。根据证券机构预测,到2025年和2030年,自动驾驶出租中国市场规模分别有望突破1.18万亿元和2.93万亿元。

而看准了这块蛋糕的自动驾驶出行服务商们也开始“圈地跑马”。以北京市高级别自动驾驶示范区为例,示范区内已有28家测试车企、超过800辆车在开展测试验证与商业化探索,累计测试里程超过2000万公里。在服务商层面,以百度为例,百度萝卜快跑已在北京、上海、广州、深圳、重庆、长沙、阳泉等城市落地,面向公众提供常态化出行服务。

有投资人士认为,如果自动驾驶车能够达到预期的安全性和经济性,有可能改变汽车拥有和使用的模式,从拥有转向共享。然而,这两个关键要素也成为自动驾驶迟迟难以实现大规模商业化的重要原因。

业内普遍认同,安全性是实现商业化盈利的基本前提。有从业人员公开表示,对于乘客来讲,安全是出行服务的最基本要素,但对于舒适以及效率的要求更明显;政府、交管部门更加关注安全和效率,自动驾驶出行服务是否足够安全,是否会造成交通效率下降或者是提升,作为业务提供方需要将三个要素做到最优秀,自动驾驶技术才能够商业化落地。

在某种程度上来说,率先解决安全问题的服务商可以在激烈的市场竞争中冲出重围。在百度看来,无人车的极致安全应该是“永不宕机,永不失准,永远在线”。而深度学习大模型的数据处理和学习能力可以实现这种安全。

这也是百度将自动驾驶大模型作为核心技术基础的原因。据了解,百度Apollo ADFM基于大模型技术重构自动驾驶,可以兼顾技术的安全性和泛化性,做到安全性更高,实现城市级全域复杂场景覆盖。同时,萝卜快跑第六代无人车全面应用了“百度Apollo ADFM大模型+硬件产品+安全架构”的方案,该方案通过10重安全冗余方案、6重MRC安全策略确保车辆稳定可靠。

百度汽车机器人部总经理尹颖在开放日介绍,截至4月,百度Apollo的自动驾驶里程已经超过1亿公里,但从未发生过重大伤亡事故。同时,百度Apollo为每辆无人车及乘客购买了500万元的保险,但过去两年的数据显示,实际车辆出险率仅为人类司机的1/14。

“以自动驾驶大模型为基础,我们已经完全具备了城市级自动驾驶出行服务所需的技术能力。”百度自动驾驶技术部总经理徐宝强表示。

成本控制规模化进程

需要注意的是,尽管行业内多家自动驾驶出行服务商抢跑布局,安全技术屡屡实现突破,自动驾驶领域实现大规模商业化依然面临一个共同的发展瓶颈——成本高企。

在业内看来,自动驾驶车辆的成本负担首先来自硬件。近些年来,硬件成本正在逐步降低。有业内人士透露,自动驾驶硬件采购成本不到1万美元,量产后还能下降70%。

除了自动驾驶硬件成本降低外,尹颖曾表示,还有两方面因素可以使车辆成本降低:“第一,整车成本降低。针对运营场景定制,应用了全自有知识产权平台,大幅降低车辆本身的成本;第二,中国制造优势,供应链及生产制造成熟完善,进一步压低成本。”

开放日亮相的新一代无人车诠释了这一特点。据了解,搭载了百度第六代自动驾驶系统解决方案的无人车,整车成本相较于5代车直接下降60%,只需要20万元,再次刷新了行业纪录。

与此同时,运维成本也是决定盈利的重要因素——“开得起但养不起”已经是自动驾驶出行服务商共同的痛点。

在百度看来,规模化部署可以摊薄运营成本。“规模越大,往商业化去冲刺的可能性会越大。所以,我们不断增加运营覆盖面积,增加无人车车辆服务,为的是朝着规模化方向去做。规模化会让我们的商业化冲刺变得更为迅猛。”在百度世界大会2023上,百度相关负责人这样表示。

如今看来,规模化策略似乎已经取得了一定成效。在大模型的支持下,快速泛化的能力为规模化部署带来了优势。在开放日的活动中,徐宝强表示,在自动驾驶大模型Apollo ADFM带来的技术跃进的支持下,在一座新的城市,完成全域无人驾驶的运营准备现在只需要半年时间。

陈卓则表示,营运成本方面,随着萝卜快跑无人车自动运营网络完成建设,营运成本将降低30%。“2023年初,我们运营规模还比较小,每辆车跑一天都要亏不少钱。到今年年初,随着时空覆盖和运营效率的大幅提升,萝卜快跑营收增长了9倍,亏损减少了一多半。随着千台第六代无人车陆续投入使用,萝卜快跑的营收增长速度会更快,已非常接近收支平衡的临界点。”陈卓表示。

“百度和车企合作伙伴将持续思考和定义无人车,目标是每一代产品成本下降一半、能力提升10倍。”百度集团副总裁、智能驾驶事业群组总裁王云鹏则表示。

营收推高盈利可能

规模化给百度带来的不只是摊薄成本,还有经营收入提高。在现阶段,用户的需求依然是支撑自动驾驶车辆收入的重要因素,而究其逻辑,自动驾驶和其他出行服务一样,需要依靠规模效益进行变现。“规模越大,能服务的用户、获得用户的需求就会更大,用户需求更大,转化成的收入就越大。”百度认为。

值得注意的是,虽然北京、上海、深圳部分区域已开放智能网联乘用车“车内无人”商业化试点,武汉也在今年实现了无人车跨越长江大桥的突破,但是,作为新鲜事物,无人车当前依然处于培养用户心智和消费习惯的阶段。

如何让更多用户接受“车内无人”?归根到底,解决安全隐患、保证乘坐体验始终是首要选项。对此,百度采取的是基于大模型,通过真实场景运行的数据积累提高出行体验。例如,萝卜快跑通过逐级或跨级降级的方式,在恶劣天气、紧急情况下做到“更安全、更人性化的安全表现”;通过自动化运营实现车辆唤醒、出车、换电、清洁,监控、收车等全流程的自动化管理,在保证车内清洁的同时保障乘客的私属空间;通过调整运营时间和线路,提高打车、约车的便利性。

当无人车切中用户更广泛的消费需求,提高消费意愿、养成消费习惯、增加用户粘度水到渠成。而有了用户对于自动驾驶的强需求,以订单收入为主的商业模式就可以尝试变现。“想要实现更高的收入目标,就需要持续提升时空覆盖,满足更多用户需求。”陈卓表示,“截至目前,萝卜快跑收到了176万用户反馈。其中,很大一部分是希望我们扩大区域范围、增设上下车点、延长服务时间。”

据了解,在武汉营商环境的基础上,以及市政府的支持下,目前,萝卜快跑在武汉的服务面积已经超过了3000平方公里,覆盖近770万的人口,相当于大半个武汉。落地至今,萝卜快跑带着武汉市民去过153家医院、179所学校,200多座大小商场,500多个居民区。

目前,萝卜快跑在全国已完成超600万次的出行服务,在武汉,订单量也在飞速增长,是2023年同期订单数的4倍还多,萝卜快跑市场份额已经超过1%。“随着更多车辆投入营运,我们相信这个数字还会持续攀升。”百度相关负责人认为。

“我们的目标是,到2024年底,萝卜快跑将在武汉实现收支平衡,并在2025年全面进入盈利期。萝卜快跑或将成为全球首个实现商业化盈利的自动驾驶出行服务平台。”陈卓表示。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

-END-


👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值